REINFORCED CONCRETE BOX CULVERT AND WINGWALL …

1MB Size 13 Downloads 15 Views

ABSTRACT I The Reinforced Concrete Box Culvert and Wingwall Design and Analysis Computer Program is the result of the joint efforts by North Carolina and
I I REINFORCED CONCRETE BOX CULVERT AND WINGWALL DESIGN AND ANALYSIS COMPUTER PROGRAM USER'S MANUAL

I Version

2.3

I I I I I I I

I Florida

Structures Design Office Department of Transportation February,

1993

I I

TABLE OF CONTENTS

I

DISCLAIMER

I

PREFACE

I I I I I I I I I I I I I INDEX.

vi

ABSTRACT

METHODOF SOLUTION DIRECT

1

ELEMENT METHOD OF BOX CULVERT ANALYSIS

THE MEMBER FLEXIBILITY DEAD LOAD,

MATRIX [ASAT]-l

EARTH PRESSURE AND WATER PRESSURE

SERVICE LOAD DESIGN

2 5 6 7

LOAD FACTORDESIGN

10

FATIGUE STRESS LIMITS

14

WINGWALLDESIGN CRITERIA

16

TIE-IN

LENGTHOF SKEWEDWINGWALL

USERINSTRUCTIONS

17 19

INPUT DATA TABLE

20

OUTPUT DATA

31

BAR SCHEDULE

35

EXAMPLES

37

STANDARD INPUT

AND OUTPUT

SPECIAL AND DETAILED INPUT AND OUTPUT

38 43

APPENDIX A PROGRAM FLOW CHART.

54

APPENDIX B VARIABLE LISTING.

56

APPENDIX C

64

APPENDIX

66

D

APPENDIX E BLANK INPUT CODINGFORMS.

..

72

75

ill

.

I LIST OF FIGURES

FIGURE 1

Boundary

2

The P,X Diagram

3

The F,e Diagram

4

Member Statics

5

Member

6

Member External Stress

Conditions

2

Matrix

3

SAt Matrix

3

Stiffness

Matrix.

4

Block

'7

Strain Diagram.

8

1

...

10

9

P,M Diagram

12

10

Wingwall

16

11

Tie-in

Length

of

Skewed Wingwall

(0°-15°,

12

Tie-in

Length

of

Skewed Wingwall

(15°-45°)

13

Bar Type Diagram.

34

14

Member Reference Diagram.

36

Length Criteria.

iv

180°-165°)

17 18

I I I

LIS~~ OF TABLES TABLE 1

Input Data Description.

20

2

Variable

56

Listing.

I

I I I

I I I

I I I I I I

v

.

I DISCLAIMER

Neither the

the programmer nor the Department take any responsibility

results

procedures

this

developed

required

that

validity

and be,

develop

program within

a competent

while

may produce

user

himself,

using

the

this

program

will

fully

or

for and its

reasonably

responsible

program

of

Paul T. C. Lee,

No warranty, of

Transportation

text

or

the

constitute Florida

or implied,

as to

accuracy

results

the

it

produces,

any such warranty, Department

Engineer performance

of

of

this

his

shall

the

Florida

risk

particular

fact

added program

of

is

as to

Department

distribution

assumed by the there

the

application.

P.E.

Department

vi

the

any connection

entire

Liang Y. Hsia,

process.

Florida

of

and no responsibility

for

he may

of Transportation

is made by the

in

is

to assure plans

preparation

and functioning

Transportation

program

results

resulting

Department

nor

Record assumes the of

all

It

P.E

Carolina

expressed

the

the

used and

documentation.

check for

as part

North

the principles

for

of Transportation

with.

The

quality

and

ABSTRACT

I I I I

The Reinforced Computer Program is Florida Departments

Concrete Box Culvert and Wingwall Design the result of the joint efforts by North of Transportation.

The user may analyze or design a one, two, three or four barrel reinforced concrete box culvert. Either service load or load factor design method may be selected. Each of the barrels may have any clear span from a minimum of two feet and a clear height from two feet to fourteen feet. All barrels in one culvert are assumed to be identical in size and shape. The culvert in this program may be a detached unit, an extended unit or a linked unit. Individually, the wingwalls extended from each corner of box culvert may be placed on different angles, the wingwall tops may be level or sloped and the wingwall lengths may be designed or specified to meet job site requirements.

Environment conditions aggressive must be selected

I I I

ranging from slightly aggressive to extremely to determine the required concrete type andcover.

By selecting the minimum output option of this program, the output may be processed into the construction plans in conjunction with the Florida Department of Transportation Roadway and Traffic Design Standards. This program may also be applied as a tool for special design and analysis.

I I I I

and Analysis Carolina and

vii

PREFACE

The original developed

I

Reinforced Concrete Box Culvert Computer Program was Paul T. C. Lee of North Carolina Department ofTransportation. This program was later modified py Arthur J. Haywood, Larry M. Sessions, Liang Y. Hsia and Elsie R. Clary of Florida Department of Transportation to add a wingwall design feature and to comply with the Florida DOT Roadway and Traffic Standards. The updated Version 2.3 was prepared to comply with the Florida DOT Special Provision 346 Portland Cememt Concrete and AASHTO load factor. Py

The addition of skewed wingwall, environment options, extension and unit conversion were managed py Robert C. Burnett in 1985 and coordinated by Liang Y. Hsia in 1991 and 1992.

Jr.,

culvert P.E.

The documentation was prepared by Paul T. C. Lee and Liang Y. Hsia. The Florida version was typed by Charlene A. Williams, proofread by Charlie B. Harvey P.E., Chris Wild and Connie Adams and reviewed by RobertE. Nichols, P.E. All d:i,agrams and coding forms were prepared by WilliamE. Howell and Structures CADDengineers. The screen data entry panels were developed by Kenneth B. Graham, P.E. This documentation is available on either double sided, high density diskette or printed copy.

I I I I

I

I I

viii

I I

METHODOF SOLUTION

The method of analysis is the displacement or stiffness method. In this method, a matrix using the member's stiffness is formed to represent the structure. Member stiffness is derived for three possible movements which are rotational, vertical and horizontal movements at the ends of members. Then the following boundary conditions are applied to the matrix:

No vertical No lateral

displacement displacement

at the outside at right

end of

ends of bottom slab. bottom slab.

1 Boundary Conditions

I

Through matrix maneuver, the displacements at the ends of each member are computed for each given loading condition. Then the exact moments and forces are determined by using the computed displacements. These moments and forces are used to develop stresses, design reinforcements or adjust member depth. If the member depth is increased, its impact is reevaluated as above. The length of each member for analysis purposes is measured from center line to center line of the supporting members. It is assumed that loading applied at top slab will be uniformly distributed over the entire bottom slab. This assumption is based upon the premise that the bottom slab is cast upon a mat of granular material. A more refined assumption seems impractical due to the lack of precise soil information at each site.

I

I

.

a. b. IFig.

1

.

Fig. Fig.

I DIRECT

The stiffness properties member at

ELEMENT METHOD OF BOX CULVERT ANAL,YSIS

direct element method matrix ASAT is built of the elements, such a time.

is a procedure directly from as the top slab

in which the external geometric and elastic of a culvert, taken one

The required input data includes the degree of freedom; the number of members and, for each member, the global degrees of freedom NP1, NP2, NP3, NP4, NPS and NP6 at the initial and terminal points; the coordinates of the terminal points referenced to the initial point as origin; the modulus of elasticity and the cross-sectional area, A. The procedure involves in succession and assembling global ASAT matrix.

computing the local the elements of the

ASAT matrix of each member local ASAT matrix into the

~.x., P6'~

I Initial PoInt

I

2 The P,X Diagram

I I

I I 3

The F,e Diagram 2

I

I I I I

I

2;

-'

0

I

0

5 In oc L

.2 I -coB c<

Slnoc I Cosoc

.3'

fA]

=

I

I~ I-SIn Fig. Fig.

L

4

0

5

CosO(

l~~

L I

0 I

L

oc -SIn oc L

61-SfnO(I~I~ 4 Member Statics

0

[SAT] =

-C K,

5 K,

Matrix

a

4Kf

2K!

2K2

4K2

5

C K,

S1-6 C r K.e-£ T K~

The Member [SAT] Matrix

3

-5 K,

CS~ ~K,-I2(f~ -CS~/P.~ -CSKt+12~ -~Kt-I2(f~ seK,+I2{f)l.~

4K2.

62K2 L

2K2

6£K2 L

6~L

-ctK,-I2(f/~ Ct

6...k

~SK+f2~I L~'~

SlKt+12(r) fe

2

6~Kp' L

6rK2

L

[ASAT] =

c

CS

-6 ..s.

CSKI-12~

L

CSKr 12.£.§.xLz-"E

-6.Q.

L

Fig

-6 r5 K2

6

r

12.~L'" foe

-CSKr 12~LI.,~ -srAi-/2('-fK£ L

4Kt.

-6 rS K2

S

-6 L K2. ctKI+I2(t/~

Stiffness

l:

I

-6~K2. L

The Member External

-6 YC Kt.

t

Matrix

I I I

I I 4

I

THE MEMBER FLEXIBILITY

[AST7]

1

-1=

[AST

I I

.

MATRIX [ASAT]-l

T]

In the displacement method of culvert analysis, displacements matrix [X] is first computed from Eq. (6), then end forces matrix [F] from Eq. (4).

[P]

= [A]

x [F]

(1

[e] = [B] x [X] = [A T] x [X]

(2)

[F]

(3)

= [8]

x [e]

Substituting

Eq.

(2)

in

Eq.

(3)

[F]=[SA7]x[X]

Substituting

(4)

Eq.

(4

in Eq. (1)

[P]=[AST7]x[X]

(5)

from which

[X]=[ASTT]-lX[P]

(6)

5

the joint the internal

.

I DEAD LOAD, EARTH PRESSURE AND WATER PRESSURE

The dead loads on the top slab The soil weight will default set at 150 PCF. The equivalent fluid default to 30 PCF..

include soil weight and concrete slabweight. at 120 PCF. The concrete weight is weight for wall earth pressure will

The program also investigates the condition of submergecl soil acting on the walls. The submerged soil pressure is taken as one half of the earth pressure acting on outside walls. Other dead loads in this case are taken as full earth pressure. Live load surcharge will defaul.t to 2 feet. Water pressure inside culvert barrels must be checkeci since this pressure may reverse the wall moments and add to the sJ.ab positivemoments. The program will use the water pressure from the culvert flowing full and empty as two loading cases.

LIVE

LOAD

Influence lines are derived from applying a unit load moving from left to right along the top slab at twentieth points of each span. Based on these results the maximum moment and shear at tenth poi.nts of each member are calculated. Live load will default to the standard AASHTO HS20 load or military load, whichever controls. The user may specify the axle weight for a special overload truck. The user may also specify a single axle load with a specified design fill as an alternate to the regular live load. This is usually used for heavy construction vehicles where the axle:; are spaced far apart so that only one axle is on the culvert at a time. Impact will apply to the top and bottom slabs and the exterior and interior walls of the box culvert. When the culvert is subjected to traffic operating directly on the top slab or when fill on the culvert is less than 2 feet deep, the wheel loads are distributed as are those on bridges. When fill is more than 2 feet deep, the wheel loads are distributed over squares with sides equal to 1.75 times the depth of fill. When these squares overlap, the total of the wheel loads is uniformly distributed over the combined, reduced grossarea.

feet, width

Live load may be neglected when the depth of exceeds the span length of a single culvert of a multiple barrel culvert.

fill or

I

I I I

is greater than 8 exceeds the total

I I

6

SERVICE LOAD DESIGN

I

1. Fig.

The following procedure is used to compute the required area of steel at three critical sections of each member; i.e., left end, midpoint and right end. The steel stress is given from input or defaulted as fs and then the stress block is determined through the iteration process. No compression steel is considered and all tension steel is assumed to be placed in one row.

7 Internal

.

MA

2.

Linear

x(fs) nx (d-x)

I

external

stress

Eq.

distribution:

1 and 2 to

eliminate

xE (d-..!E.) = M+P (d-.!' 2 3 2)

Block

moment:

= 0i

Combine

I

moment equals

Stress

fIco

Mi = Me

The equation f(x) is solved polynomial equations. The value of accuracy of 0.01 inch.

If fl c

-f

-x -n

X(n+l)

by Newton's iteration process for X is computed approximately to an

(x)

f/(x)

there

=!:!E+~ I

is no tension

stress

because of

As =

large

P and small

M, then

A

and the minimum amount of reinforcing tension stresses, the concrete stress steel

I

[~(f'c)

The shear

(X) (b)

stress

-P]


steel would be used. If there are f'c = fsX/n(d-X) and the area of

Ifs.

computed

as follows:

fv = v' "Ed

where b = 12.0

inches

*At the left or the right end of a member where sections less than a distance d from the face of the support, they will for the same shear, V, as that computed at a distance d. The allowable concrete stress in compression The allowable concrete shear stress is computed

For fills

less

are located be designed

I I

I

is assumed to be O.4f'c' as follows:

than 2 feet:

Vc=O,9SVF:

I

OR

I whichever

is greater.

(Vc shall

not

exceed 1.6 ~

I I 8

For fills

Vc = 0.95

greater

than or equal

to 2 feet:

yI7r;

I OR

whichever p = reinforced

is greater. ratio

(Vc shall

= As/bd

I I I

I

I I I I

9

not

exceed 1.8 ~

I

Fig. 1.

I LOAD FACTORDESIGN

each

The following member.

Loading PE E

procedure

= 1.3

is

used

to

(D + 1.667(L+I)n

= 1.0 for rigid culverts, = Earth pressure;W.P.

= Water pressure,

check

+ PE E. including

refer

the

critical

sections

of

+ W.P. reinforced

to page 6 about

concrete

two loading

boxes;

cases.

2. A concrete stress of 0.85 flc will be assumed uniformly distributed over equivalent compression zone bounded by the edges of a cross section and a straight line located parallel to the neutral axis at a distance a = B1C from the fiber of maximum compression strain.

b

.85f'0

Ec

I I OAs

£s

S~t!on

Strain

8 Stress, P1 = 0.85

Strain

EqurvalentStress

Diagram

I

when f~ s 4000 psi

OR

I to

3. No compression be in one layer.

steel

is

considered

and all

tension

steel

assumed

I 10

I 4.

M Ru = O.9bd2

p = O. 85f'

1 -

c

2Ru 1 -O.85fcl

I

fy

Pb = O,85(31f'o fy

x

87000+ fy 87000

I

. I

Assume As Set

p ~ O.5Pb. ;

*Best

p ~ 0.002

economy

is

achieved

where

As = pbd

5.

a =

Compute Mu (Pure flexure)

ASfy

O.8Sf'cb cI> = 0.9

6.

Compute Po (Pure Compression)

Po = 4>[0. 85ft"

(Ag-Ast)

+ Astfy]

cI> = 0.7

Ast

= As + As(min)

11

p = .5Pb instead

of

O.75Pb

.. II Fig. .. -Ala=

I 7. Ph

Compute Mb, Pb (Balanced

= cI> [O.S5f'c

Mb = Pbeb

= 4>

X 12

X Bh

-Asfy]

O.8Sf'c x 12ab x

= 0.85 = 0.8 = 0.7

For slabs For Ext. Wall For Int. Wall

8.

Condition)

Assume straight line balanced conditions,

relation balanced

between pure compression and conditions and pure flexure.

p

. ~ ~! Q..

Po .7Po

AII~bI8

:::,::--~~=I.o

I1K)ment of

0' 8«1tl'Oftunder G'xlal 0,oroe l-u

--::::~~=.9

"" ""

, ':::~

I

(J=.7 , "

,,'"

eb

,,':t~

Pb

Po MU Moment.

9

Ai

P,M Diagram

12

AI

I The shear stress (fv) is computed as follows: The allowable concrete shear stress is computed as follows:

I

For fills fv

I

= M'Vu.

less

than 2 feet:

b = 12.0 inches

Vc = 2 ~

OR

I

whichever

is greater.

p = reinforcement

~M

ratio

(Vc shall

not exceed 3.5 ~

= As / bd

s 1.0 For fills

equal

to or greater

than 2 feet:

Vc = 2 v'f1;

I I

OR

whichever

is greater.

(Vc shall

v ud ~ 1. 0

I I I .. 9.

~

13

not exceed 4. 0 ~

)

1. of

I

FATIGUE STRESS LIMITS The tensile reinforcement in box culvert elements subjected repeated variations of reversals of stress shall be designed so that actual range of stress does not exceed the allowable fatigue stress. depth of fill also has a substantial effect on this fatigue range.

to the The

Such range between maximum and minimum stresses in tensile reinforcement caused by live load plus impact at service load shall not exceed: f f = 21

-O.

33 fmin + 2. 4

AASHTO

ff = stress range, ksi fmin = algebraic minimum

(8 -6 0)

stress

compression-negative), At section fs = ~;

+M

where stress (Tensile

fs=~

r

k -d'

--M a

-A:7'd d' d

I

where,

At section

fl

(tension-positive;

is not reversed.

M = Live load moment range jd = d -kd / 3 where kd is to neutral axis.

fiber 2.

where stress

level

ksi

d,1

part

the distance

compression

is reversed. of stress

I

range)

(Compzessive pazt

-k

from extreme

of stzess

zange);

wheze,

I

= distance from extreme compression fiber to centroid compression reinforcement. = distance from extreme compression fiber to centroid of tension reinforcement

Total

stress

range

= fs + f's

I

CRACKCONTROL

steel

The program checks for crack control

98

ksi

AASHTO

maximum service load as per AASHTO Article

stresses 17.6.4.7

in

the

reinforcing

I

(17 -19)

fs=~ is :

Maximum service

load

stress

14

~

I

I

MINIMUM

Minimum eccentricity e =,!:!.

will

ECCENTRICITY

be checked for

all

members.

M = P x e

p' If If

e < 1", then e = 1" e < 0.1 x T, then e = 0.1 x T SLENDERNESS Slenderness

I

will

T = wall

r ={f

radius

= 1t2~ I v7

of gyration will

I

...

be neglected

if

Kl/r

AASHTO (8-42)

, 2

= 2.5(1ECIg + ~d)

Ec = 57000 ~

I

AASHTO

(8-44)

AASHTO (8.7.1)

g -- T 3

~ Dead Load Moment d= Maximum To tal Moment Mc = 6 bX~b

AASHTO

Cm Pu ~ 1

6b =

only

thickness

Slenderness

EI

walls

T

r=o.3x~

Pc

be checked for

(8-40)

AASHTO

(8 -41

)

1-cl>Pc

Cm = 1 Mc = Magnified

Moment

c!I = 0.7

15

< 22.

Where

k = 2.0,Height. 1

= Clear

Fig.

WINGWALL DESIGN CRITERIA The following criteria developed by FDOT Drainage

of calculating Section.

wingwall

height

and

length

were

I I

I

H = Clear height of barrel

Wt'nql4lall height

+ Top slob thickness

+ 1'-0" headwall Transition WalIHt.

=

H

-(H

-/.5)

0<

90

-45

-45

W;ngwallstandard length

1 =

1.5 H -Wall

thickness + 3'-0-

(For or

1, = 1

+ (3 H -1)

345 -Q( 345 -3/5

12 = 3 H

10

Wingwall

16

Length

Criteria

tS-
(For 3/SO
I TIE-IN

LENGTH OF SKEWED WINGWALL

Tie-in length of straight wingwall is specified on Sheet 3 of 4 in FDOT Roadway and Traffic Design Standards. Figures 11 and 12 illustrates the tie-in length of skewed wingwall in different ranges of skew angles.

I I

~ .d I

I

Angle of Skew

I

Sf

I

I

I

, Ct>t I

I

I

I

~ Culvert

I

~ Roadway

~I I

I

I

I

D = 1'-0" Average Cl.Jtof top slab and side wall of exlstfng culvert when new culvert to be extended from existing c'Ulvert =

(20 + 20) /

z. z.

/

Cos~

ft.

COB .d

LAYOUT

OF SKEW CULVERT

WHEN L1 VARIES & FROM

I

FROM

WING

OOTO 150

IBOOTO 1650

I 11

Tie-in

Length

of

Skewed Wingwa11

17

I Fig.

(0°-15°,

1BOO-165°)

. ;'

I

~

of8I1rra'

--,--'Of

_-A

,/

(,1'

I

~I

D = /'-0'

Av".

aJtof ~ 8iab0tx1' sId, wolf

of exIstIng all/eft wh8'?hM OIJIvert

D + 2. '2. ~

to be BXttrKJed from exlsfl~ cr.weft = =

2.

/'

3 2. CoB.4

COB.d

ft.

LAY(JJTOF SKEWCULVERT WHEN..d VARIES FROM'~TO 4SO

12

Tie-in

Length

of

18

Skewed Wingwall

(15°-45°)

;

USER INSTRUCTIONS

I

The user may select either the short coding form for routine design or the long coding form for special analysis and design. These coding forms are provided in Appendix E. Each input field and the default value is described in the following Input Data Table. The output is explained in the following sections of Output Data, Bar Schedule and Examples.

I I

I

I I

I I

. ..

19

!II

I INPUT DATA TABLE Input

Requirements for Reinforced Concrete and Wingwall Computer Program Header

CARD NUMBER

CARD

*

2-

and Card

VARIABLE FORMAT

COLUMN!

*

Card

One

DESCRIPTION

NAME

KAST

Al

HEADER CARD

3

COMM(I)

I2

RUN NUMBER

NA

Identification 4-22

*

23-28

*

29-80

COMM(I)

A19 NAME

COMM(I)

A6

COMM(I)

A52 HEADING

1

KaNE

P HONE NUMBER

Extension

II

CARD

2

LVLD

II

LIVE

project

3

LVOMT

II

OMIT

no.,

NA

date

NO.

code: LOAD

LIVE

1

2 4 6 8

: : : :

Live

I

H2O HIS HIO Special

LOAD

Valid code 1 : Live load to be neglected 2 : Live load .regardless

I I

NA

1

Valid code 1 : HS20 3 : HS15 5 : HSIO 7 : Blank 9 : None 1

NA

phone number

HEAD

Valid 1

NA

only

NA

Heading, 1

DEFAULT

VALUE

1

*

Box Culverts

2

to be used of fill height

load may be neglected

for

single box cul,vert if depth of fill is more than 8 ft. and exceeds span length;

for multiple box culvert it may be neglected if depth of fill exceeds the distance between faces of end supports. 1

4

IZOF

II

ZERO FILL STRESS CHECK Valid code 1 : Stress check at 2 : No stress check

2

zero fill at zero

fill 1

5-9

OVERLD

F5.0

OVERLOAD STANDARD TRUCK AXLE

WEIGHT Valid code:

20

Blank-xxxxx

I I

0

LB

I

I I

Card One
CARD NUMBER

I I

1

i CARD COLUMN

10

I VARIABLE

DESCRIPTION

I FORMAT

DEFAULT VALUE

NAME

IDSN

11

IDESIGN METHOD

Valid

2

code

1 : Service Load Design 2 : Load Factor Design

1

11

MTEN

11

PRINT M, V, P @ 1/10 POINTS Valid code

2

1

1

: Print

Else: 1

12 IINFN

Il

Not print

PRINTING

LIVE LOAD INFLTJENCE

2

LINE Valid code: 1 : Print Else: Not print

1

I

13-15

I F3.2

DESIGN NEGATIVE MOMENT POSITION Valid code: 0.0 -1.0

Defined by a ratio from 0.0 to 1.0 where 0.0 represent:3 the joint centerline and 1.0 represents the face of ",all or slab. AASHTO (8.8.2)

EWGT

1

F3.0

WEIGHTOF SOIL IValid

1

19-23

FYST

F5.0

Valid

1

124-28

FSTL

F5.0

29-32

I FCONC

F4.0

.

120

PCF

PC]~

code;

Blank-xxxx:<

code

: Blank-xx~{

24,000

PSI

PSI

COMPRESSIVECONCRETEDESIGN STRESS Fc code:

Blank-xxxx

33-35

FSHR

F3.0

ALLOWABLE CONCRETE SHEAR STRESS Valid code: Blank-xxx J?SI Blank means by AASHTO specifications

1

36-38

FSTIR

F3.0

ALLOWABLE CONCRETE SHEAl~ STRESS

21

3,400

PSI

PSI

1

WITH STIRRUPS Valid code: Blank-xxx Blank means no stirrups

60,000 PSI

PSI

Fs

Valid

IDNEG I116-18

ODD-xxx

ALLOWABLE STEEL STRESS Valid

1

code:

YIELD' STRENGTH OF REINFORCEMENT

Fy

I

1.0

PSI desired

PSI

PSI

I.. :

Card One (Continued) CARD NUMBER

1

CARD VARIABLE COLUMN !

DESCRIPTION

FORMAT

39-41

ADDS

F3.2

THICKNESS INCREMENT OF :~LABS

Valid 1

42-44

ADDW

F3.2

45-47

covs

F3.2

48-50

'COVB

F3.2

code:

51-53

covw

F3.2

54-56

COVIN

F3.2

57

ISAMS

11

58

ISAMW

11

0.5 IN

IN IN

code:

Blank-x.xx

INCH

Blank-x.xx

INCH

EXTERIOR WALL CONCRETE COVER Measured from center of bar to face of concrete Slightly aggressive envj.ronment Moderately/Extremely ag~rressive environment

code:

Blank-x.xx

code:

Blank-x.xx

SAME TOP & BOTrOM

SAME EXTERIOR

wall.

22

IN IN

2.5 3.5

IN IN

INCH

SLAB

DESIGN

2

and of

& INTERIOFt

THICKNESS Valid code 1 : Same thickness ELSE: Set thickness

2.5 3.5

I .I

INCH

INTERIOR WALL CONCRETE COVER Measured from center of bar to face of concrete Slightly aggressive envj.ronment Moderately/Extremely ag~rressive environment

Valid code 1 : Same thickness same steel ELSE: Set thickness slab. 1

INCH

IN

BOTTOM SLAB CONCRETE CO"ER Measured from center of bar to face of concrete Slightly aggressive env:.ronment i 2.5 Moderately /Extremely ag~Jressi ve 3.5

Valid 1

Blank-x.xx

0.5

IN IN

Valid 1

INCH

2.5 3.5

environment Valid code: 1

Blank-x.xx

TOP SLAB CONCRETE COVER Measured from center of bar to face of concrete Slightly aggressive env:Lronment Moderately/Extremely ag~Jressive environment

Valid 1

code:

THICKNESS INCREMENT OF \'lALLS

Valid 1

DEFAULT VALUE

NAME

of

each WALL

each

I I I I

2

I I

Card One (Continued) CARD NUMBER

1

59

IBSH

Il

DESCRIPTION

DEFAULT VALUE

BAR SCHEDULE

1

Valid code 1 : Print bar schedule 2 : Not print bar sched1~le 1

60-62

SPACMAX F3.1

MAX. BAR SPACING

DESIGN Valid code:

I

1

63-65

SPACMIN F3.1

1

66-67

MAXSIZ

12

MAX.

Valid 1

68-69

MINSIZ

12 Valid

I

1

70-72

F3.1

CN

73

ENVIR

11

Blank-18.0

code:

INCH

04.0-18.0

4.0 IN :[NCH

BAR SIZE

code:

11

01-11

BAR SIZE code: 04-11

4

MODULAR RATIO

Valid code: 1

18.0 IN

BAR SPACING DESIGN Valid

9

1-9

ENVIRONMENT CONDITION Valid code: : Slightly

0-3 See Not:e aggressive

1

(1)I

1 : Slightly aggressive 2 : Moderately aggressi'lTe 3 : Extremely aggressivE~ NOTE:

(1)

The environment condition is required to determine t:he default concrete cover of reforcing steel and concrete clas~;: Under a slightly inches and Class

aggressive II concrete

environment is selected.

condition,

concrete

minimum cover

Under a moderately or extremely aggressive environment condition, concrete cover is 3 inches and Class IV concrete is selected. Leave this

field

blank

for

a slightly

I I

MIN. I

CARD VARIABLEFORMAT COLUMN NAME

23

aggressive

environmentcondition.

is

2

INOTE: I

Card

Two and Card P

CARD CARD VARIABLEFORMAT NUMBERCOLUMN NAME

2 2

KTWO

1

EDLU

2-5

II

DESCRIPTION

CARDNO.2 Valid code:

F4.3

6-10

EDLCI

F5.3

code:

2

11-13 EDLXl

F3.2

2

14-18

F5.3

EDLC2

DEAD LOAD

Blank-x.xxx

K/FT

EXTRA CONCENTRATED DEAD LOAD

Valid

code:

Blank-xx.xxx

KIPS

POSITION OF CONCENTRATED LOAD Measured from centerline of the leftmost wall of the culvert Valid code: Blank-x.xx FT. EXTRA CONCENTRATEDDEAD LOAD-2

Valid

code:

Blank-xx.xxx

KIPS

2

19-21 EDLX2

F3.2

POSITION OF CONCENTRATEDLOAD-2 Measured from centerline of the leftmost wall of the culvert Valid code: Blank-x.xx FT.

2

22-26

IEDLC3

F5.3

EXTRA Valid

2

27-29

EDLX3

F3.2

POSITION OF CONCENTRATEDLOADMeasured from centerline of the leftmost wall of the culvert

Valid

CONCENTRATED DEAD code: Blank-xx.xxx

code:

LOAD-3 KIPS

Blank-x.xx

30-34

WHEER

F5.3

SPECIAL WHEELLIVE LOAD Enter weight of one wheel Valid code: Blank-xx.xxx KIPS

2

35-38

FILLR

F4.2

EARTH FILL Measured to top of slab Valid code: Blank-xx.xx

39-42

OFACT

F4.2

p

1

KPAS

Al

code:

iFor Load Factor Ip = As / bd

RATIO

p

2-4 PAS

F3.3

Leave

Card

2 or

Card P out

if

code:

default 24

value

00.0

0

I

00.0

0

I

00.00

I

only

follow

REINFORCEMENT RATIO

Valid

0

CARD

design

Optional card always Card '1' or Card '2' Valid code: P

0.00

1.00

1.00-xx.xx

i REINFORCEMENT

0

FT.

OVERSTRESS FACTOR

Valid

0

FT.

2

2

VALUE

2

2

EXTRA UNIFORM

Valid 2

DEFAULT ;

.xxx is selected.

.012

I

I I

Card Three CARD

CARD

VARIABLEFORMAT NUMBERCOLUMN! NAME

DESCRIPTION

DEFAULTI VALUE

I

1

3

KTHR

II

ICARD

NO.3

Valid 3

2-3

,NCARD

I2

code:

3

3

CULVERT NUMBER

NA

Valid code: 01-99 Unique no. for identification 4

3

NBOX

II

[

NUMBER OF BOX CULVERT BARRELS

Valid code: 3

5-8

NSPAN

F4.2

1-4

CLEAR SPAN OF EACH BARREL

Measured from inside barrel wall to right barrel wall

Valid 3

I I

9-12 NHITE

F4.2

NA

code:

of of

02.00-xx.xx

left

FT.

I CLEAR HEIGHT

Measured from top of bottom slab to bottom of top slab Valid code: 02.00-16.00 FT. 3

13-17

NFILL

F5.2 DESIGNFILL Measured from bottom of top slab to the average elevation of the roadway surface.

Valid 3

18-22

LENG

code:

F5.2 ILENGTHOF CULVERT line of culvert Valid code: xxx.xx

13

23-25

LEFT

I I

.

I ILSKE

26-28

RSKE

I3

NA

FT.

HEADWALL SKEW ANGLE

RIGHT

SKEW ANGLE

Measured from line perpendicular to center line of culvert in clockwise direction to headwall face Valid code: OOO-xxx DEGREE

25

NA

right!face center

Measured from line perpendicular to center line of culvert in clockwise direction to headwall face Valid code: OOO-xxx DEGREE 3

NA

OOO.OO-xxx.xx FT.

Measured from left to of culvert along

3

NA

000

000

I..

Card Three (Continued) CARD NUMBER 3

CARD COLUMN,

29

VARIABLEFORMAT NAME KBASE

Al

DESCRIPTION

FLOOR SUPPORT JOINT Valid code X :

No floor supportIH

: No floor support

: Full 3

30-33

TSLAB

F4.2

DEFAULT VALUE CONDITION

with

fixed

with

hinged

end

floor

TOP SLAB THICKNESS

Leave this field blank to use default seeded minimum value to design optimized thickness Valid code: Blank-xx.xx IN. 3

34

KFXTS

Al

FIXED TOP SLAB THICKNESS Valid code

F : Fixed 3

3

135-38

39

I BSLAB

F4.2

Al

BOTTOM SLAB THICKNESS

FIXED BOTTOM SLAB THICKNESS

Valid code F : Fixed thickness 3

40-43

WALLR

F4.2

EXTERIOR WALL THICKNESS

Leave this field blank to use default seeded minimum value to design optimized thickness Valid code: Blank-xx.xx IN. 3

44

KFXW

Al

FIXED EXTERIOR WALL THICKNESS Valid code

F : Fixed 3

45-48

IWALLR

F4.2

49

KFXTS

Al

BLANK

9 IN

BLANK

9 IN

I BLANK

thickness

INTERIOR WALL THICKNESS

Leave this field blank to use default seeded minimum value to design optimized thickness Valid code: Blank-xx.xx IN. 3

9 IN

thickness

Leave this field blank to use default seeded minimum value to design optimized thickness Valid code: Blank-xx.xx IN.

KFXBS

I

BLANK

FIXED INTERIOR WALL THICKNESS

9 IN

BLANK

Valid code F : Fixed thickness NOTE: Use fixed slab or wall or to match the existing

., thickness to box culvert

26

override structure

the calculated for a culvert

thicknesses extension project

II

I Card Three CARD

3

50-52

i

VARIABLEIFORMAT

DESCRIPTION

NAME

SURCH

F3.1

LIVE

3

53-54

PRESS

F2.0

code:

MAXIMUM SOIL

PRESSURE

For lateral Valid code: 3

55-56

PMIN

F2.0

DEFAULT VALUE

LOAD SURCHARGE

Valid

2.0 FT

Blank-xx.x

FT.

EQUIVALENT

FLUID

30 PCF

earth pressure Blank-xx PCF

MINIMUM SOIL EQUIVALENT FLUID

15 PCF

PRESSURE

For checking Valid code: 3

57-59

PWAT

3

60-62

TFILT

F3.1

I

.

3

63-65

3

66

BFILT

KRACH

positive Blank-xx

moment PCF

F3.1 WATERWEIGHT'Valid

F3.1

Al

62.4

code : 62.4 PCF : No water pressure

-1

I II

CARD

NUMBER COLUMN

(Continued)

TOP HAUNCH Valid

code Blank-xx.x : 2 IN.

-1.0

: Zero top haunch

2.0 IN

IN.

BOTTOMHAUNCH Valid code Blank-xx.x IN. : 2 IN. -1.0 : Zero top haunch

2.0

HAUNCH CONSIDERATION

Valid

IN

BLANK

code

: Haunch not to be considerea X : Haunch to be considered by

1983 AASHTO8.8 3

3 3

67

68-79 80

KHWAL

CaMS

ITEST

Al

A12 11

HEADWALL ELIMINATION Valid code

BLANK

: Eliminate B : Eliminate

no headwall both headwall

L : Eliminate R : Eliminate

left right

!Valid code:

BLANK

headwall headwall

COMMENTS

Free

comments

SPECIAL PRINTOUT Not normally used. testing purpose

Valid

strictly

code

1 : Print DL, SP, WP and LL moments and shears

: No

27

off

for

. I

I Card Four CARD CARD VARIABLE NUMBER COLUMN !

DESCRIPTION

FORMAT

DEFAULT VALUE

NAME

4 4

1

2-3

KFOR NCARD

II 12

CARD NO.4 Valid code:

CULVERT NUMBER

Identify each culvert a unique number Valid code: 1-99 4

4

4 IMINKEY

5

WINGTY

II

4

4

MINIMUM

NA

with

I

OUTPUT KEY

: Minimum output Leave it blank, 0 or 1 to turn off all output except what is required for Florida Roadway Design Standards 1 : Minimum output 2 : Detailed output

II

WINGWALLTYPE Valid code :

BLANK

BLANK

Straight wingwall which aligns with the headwall

1 : Straight BLANK

wingwall

same as

2 : Skewed wingwall which points to different azimuth angle from culvert headwall skew angle 4

6-8

WLSKEF

13

4

9-11

WLSKEB

13

LEFT FRONTWINGWALLSKEWANGLE Measured from line perpendicular to center line of culvert in clockwise direction to wingwall face Valid code: 0-45 degree 225-360 degree BLANK: Wingwall parallel to the headwall

LSKE

LEFT BACK WINGWALLSKEWANGLE

LSKE

Measured from line perpendicular to center line culvert in clockwise direction to wingwall face

Valid

code: BLANK:

28

135-315 degree Wingwall parallel to the headwall

of

I Card Four CARD

I

122-25 I iWRSKEF 112-14 IWRSKEB !15-17 [18-21 IWSKRF IWSKLF IIWSKLB

CARD

(Continued)

VARIABLEIFORMAT

NUMBERCOLUMN

DESCRIPTION

4

VALUE

13

RIGHT FRONT WINGWALL SKEW ANGLE Measured from line perpendicular to center line of culvert in clockwise direction to wingwall face

Valid

code: BLANK:

I3

4

F4.2

4

code: BLANK:

F4.2

4

F4.2

30-33

WSKRB

F4.2

length

Calculated

length

RIGHT FRONT WINGWALL LENGTH Overrides calculated wingwall length, if length is specified the wingwall front tip length will be identical to the height at joint of wingwall & culvert Valid code: 0.00-99.99 FT.I

BLANK: 4

Calculated

LEFT BACK WINGWALL LENGTH Overrides calculated wingwall length, if length is specified the wingwall front tip length will be identical to the height at joint of wingwall & culvert Valid code: 0.00-99.99 FT.

BLANK: 26-29

45-225 degree Wingwall parallel to the headwall

LEFT FRONT WINGWALL LENGTH Overrides calculated wingwall length, if length is specified, the wingwall front tip length will be identical to the height at joint of wingwall & culvert Valid code: 0.00-99.99 FT.

BLANK:

Calculated

length

RIGHT BACK WINGWALL LENGTH Overrides calculated wingwall length, if length is specified the wingwall front tip length will be identical to the height at joint of wingwall & culvert Valid code: 0.00-99.99 FT.

BLANK: 29

RSKE

0-135 degree 315-360 degree Wingwall parallel to the headwall

RIGHT BACK WINGWALL SKEW ANGLE Measured from line perpendicular to center line of culvert in clockwise direction to wingwall face

Valid

4

DEFAULT

NAME

Calculated

length

RSKE

. II

I ;(RIGH)

I Card Four CARD NUMBER

4

(Continued)

CARD VARIABLEIFORMAT COLUMN NAME 34

CULEXT

II

DESCRIPTION

CULVERTEXTENSION A calculated tie-in

DEFAULT VALUE

BLANK

length

will be excluded from the new culvert bottom slab at each side which is connected to the existing culvert

Valid

code

: New culvert with left and right

(BOTH)

wingwalls

1 : New culvert with left and right

(BOTH) (BOTH)

wingwalls 2 : New culvert extends from left side of existig culvert with left wingwall only 3 : New culvert from right

extends side of

existig culvert right wingwall 4 :

35

NOHEAD

11

1 : 2 : 3 : 4 : 36-37

wwcovs

F2.1

38-39

IALLCOV

F2.1

(NONE)

no wingwall

OF HEADWALLiValid code Left and right headwalls Left and right headwalls Left headwall only Right headwall only No headwall

BLANK (BOTH)

(BOTH) (LEFT)

(RIGH) (NONE)

COVER FOR OUTSIDE FACE OF WALL Slightly aggressive environment Moderately/Extremely aggressive environment

Valid code: 4

with only

NUMBER

:

4

(RIGH)

New culvert connects existing culverts

with 4

(LEFT)I (LEFT)

ALL

Blank-x.xx

OTHER FACES

INCH

environment aggressive

Blank-x.xx

INCH

4

40-49

PROJNO

A1O

PROJECTNUMBER Valid code: Free format

4

50-80

LOCSTA

A47

LOCATION & IDENTIFICATION Valid code: Free format

30

3.5 IN

CONCRETE COVER

Slightly aggressive Moderately/Extremely environment

Valid code:

2.5 IN

2.5 3.5

IN IN

I

I

OUTPUT DATA

Three categories

of output

are available

from this

program:

The first category is the Standard Box Culvert and Wingwall Design Output which may be incorporated into the Florida Department of Transportation Roadway and Traffic Design Standards Indexes 280 and 290 to produce a complete design. The second moment generated each member.

stress

category is the Special by dead load, live load,

Output which tabulates shear soil and water at tenth point

The third category is the Detailed at critical sections and reinforcing

Combinations triggering either

The output Input

of one

these three or both of

Output which tabulates bar splice lengths.

output categories the Special Print

data has the following

may be generated and Minimum keys.

and of

shear by

reports:

Data Reflection

The first page of every output is an echo of input and default data. The user can verify this page with his coded input form to detect and correct any discrepancy. The concrete covers coded and echoed on this page are the dimensions measured from the center of bar to the face ofconcrete.

2.

Standard

Output:

2.1 The first part of this output provides a detailed description of material properties, box culvert and wingwall geometry, calculated design dimensions and concrete quantities. The concrete covers on this page are the dimensions measured from the face of reinforcing bars to the face of concrete and have the following default values;

Slightly aggressive environment: Moderately aggressive environment: Extremely aggressive environment:

2 in. 3 in. 3 in.

The valid range of headwall and wingwall skew angles is detailed on Sheet 1 of 5 of Index 290. Based on the wingwall skew angle and drainage considerations, the length, height and front tip height of each wingwall are calculated from the equation in Figure 10 on page 16. If all wingwall lengths and front tip heights are identical, a condensed output will automatically be created. Two sample input coding forms and output reports are shown on Pages 38 through 53. is

the

The total sum of

wingwall the front

length with barrel width wingwall length, barrel

The Pour 1 barrel concrete quantity is the the bottom haunch and the 2 in. height of exterior with the bottom slab.

I mark,

tabulated on the output width and back wingwalllength. sum of the and interior

2.2 The second part of this output tabulates number, set, size, spacing, type, length,

31

bottom slab, walls cast

the reinforcing weight and

bar total

. I

quantities. Moment: Shear: As: 3.1.6 VA: FCA: Moment: Shear: PO: MU: MB:

The mark and type with Index 290.

referenced

The column heading designed reinforcing

total

In Cl bar culvert

of SET is derived bar length by the

are

directly

cross-

from dividing the individual standard 40 ft. stock length.

column

headings

Maximum design

Axial

Force:

Axial

3.1.3

Maximum

SpecialOutput:

with

design

shear

force

at

the

in

kip-it

maximum moment

critical

section,

kips.

3.1.5

Shear Stress:

Shear stress

Required

area of steel

Allowable

shear stress,

3.1.7 3.1.8

Concrete in psi.

Allowable

3.2 Load Factor

concrete

Maximum in kip-ft.

section,

Axial

Force:

Axial

at same section,

3.2.3 section,

compressive

stress

at the section,

due to design

moment

in psi

reinforcement,

in square inches.

in psi.

co~pressive

stress,

in psi.

Design

3.2.1

Design kip-ft.

factor

load

design

in kips.

Maximum load in kips.

Axial

in

the

section,

load corresponding

Concrete Stress: and axial force,

3.2.5

of

in kips.

3.1.4

3.2.4

definitions

moment at the critical

design

at the same section in

and

Load Design

3.1.1

3.2.6

are

I

following

Service

3.2.2

bars

OUtput:

The

3.1.2

reinforcing

the case of a box culvert extension, the C3 bar will replace the in the bottom slab to accomodate the reduced length of the new box bottom slab which will be tied to the existing box culvert bottomslab.

3. Special

3.1

of the

factor

load corresponding design

designcompression, load strength in kips moment

strength

moment at

design

of

the

shear

of section

with force

the (pure

the

maximum .moment at

the

section

critical

in

pure

flexure),

Design moment strength of the section when assumed strain of concrete and yielding of tension reinforcement simultaneously (balance conditions), in kip-ft.

32

critical

ultimate occurs

I

I

I

. 5.

4

3.2.7

PB: Axial design load strength of the section when assumed ultimate strain of concrete and yielding of tension reinforcement occurs simultaneously (balance conditions), in kips.

3.2.8

As:

3.2.9

Shear Stress:

Shear stress

3.2.10

MA: Allowable load condition,

moment strength in kip-ft.

3.2.11

VA: Allowable

shear

Detailed

Required

area of

reinforcement,

in square

at the section, of

inches

in ksi

a section

under

axial

design

in psi

stress

Output:

In either the Service forces, stresses, etc. are as listed below:

Load or the Load Factor design, the moments, given for each critical section of each member

M: Member identification T:

Thickness

Lt

End:

Rt End:

tension

At

number.

of that bottom

At top

member, in inches.

for

for

Mid Span: At 0.4, is the greatest.

wall,

wall, 0.5,

at at

0.6

the

the of

left

right

the

end of end of

span,

from

the

slab

the slab. left

to right,

whichever

Bar Design This part Transportation North Carolina

of output is used for the North Carolina Standard and is printed for output verification and Florida versions.

Corner

Bar

(T):

Corner

at top slab,

Corner

Bar (B):

Corner

at bottom slab,

TSLAB+: Top slab TOp slab

bottom bar, top bar,

BSLAB+: Bottom slab Bottom slab Exterior EXTOUT: Exterior Interior Longitudinal

wall wall wall bar,

A1OO.

A300

top bar,

A200

bottom bar, inside

A300

bar,

outside bar,

Al.

bar,

Bl B2.

B3.

Cl.

33

A2

Department between

of the

,.. 6. 7. 8. 9. Fig.

I Bar Schedule. Moment, shear,

axial

force

at tenth points.

Influence Line (option): This be requested when necessary.

is

an extensive

(option) printout,

and should

only

Member reference

I

M:Member;& Lt. End; R:Rt. End 13 Member Reference

34

Diagram

I

I I

BAR SCHEDULE

Normally, the bar schedule is printed with the design option but may be omitted with the analysis option. The user must refer to the Florida DOT Roadway and Traffic Design Standards Index No. 290 to determine the exact location of bars.

:

Top corner

:

Bottom corner

'A2'

I

'AIOO'

* 'A151' 'A200'

*

TOp slab

:

'AIOl'

bars

positive

to

'AlSO':

TOp slab positive,

left

to

'A199'

TOp slab positive,

right

Bottom slab positive,

:

left

'A251'

to

'A299':

Bottom slab positive,

right

Top slab

negative

to

'A350':

Top slab negative,

left

'A351'

to

'A399':

TOp slab negative,

right

Bottom slab

side

negative

Bottom slab negative,

left

'A451'

to

'A499':

Bottom slab negative,

right

Exterior wall construction

I

Interior

wall

'Cl':

Longitudinal

'C2':

Top slab

'C3':

Longitudinal is extended

Left * 'G2':

Right Left

* 'S3':

Right

outside joint.

cut bars cut bars.

bars

cut bars.

(main bars)

'A450':

inside

cut

side

to

wall

side

side

'A401'

Exterior

bars

(main bars).

'A301'

:

cut

(main bar

Bottom slab positive,

:

cut bars

side

'A250':

'BI':

(N. '52': 'B2': 'AI' 'B3': 'Gl':

side

to

'A400'

I I

(main bars)

'A201'

'A300'

I

bars.

side side

cut bars. cut bars.

bars bars,

from

construction

joint

to

bars bars

(Florida

Standard)

bars

side side side side

bars from

replace Cl an existing

head wall head wall end bars, end bars,

bars,

at bottom culvert.

(Florida

bars,

of

slab

when a new culvert

Standard)

C. Standard).

(N. ~. Standard) (N. C. Standard).

* If Left and Right skew angles combine left and right bars.

are the same,

35

the computer

output

will

.

Fig.

I Bar sizes range from #4 to #11 and spacings from 4" to 18". A2, A300, A400 and B2 have the same spacing and the requirement "C" tension lap splices applies. be

For a single box a "U-Shaped" bar.

Bar

with

a span

less

than

5 feet,

the

Bars A1, for Class

corner

bar

will

Types

STRAIGHT

I,

-BAR

8

-I <..>

lYPE

I BAR TYPE II

I~

B

BAR

_1

(.,)

TYPE 10 BAR

14

Bar Type Diagram

B: Horizontal dimension (slab)C: Vertical dimension (wall) D: Vertical dimension (wall)

corner

There are no 'B2' bars bars will overlap.

if

the

clear

height

is

less

Design

Refer to the Florida Department of Transportation Standards Index No. 290, Sheet 1 of 5 for bar

than

6 feet

as the

Roadway and Traffic splice details.

I I 36

I

I

EXAMPLES Depending upon the desired output, input data can be divided into two categories. The first category is the mandatory input data to develop the output for the design of standard highway box culverts and wingwalls. The second category is the input data required for a special design or structural analysis. The data in the second category can all be changed from preselected defualt values to special values required by user to perform detailed special design or analysis. The first category of mandatory input is the Short Coding Form. The complete input mandatory and special input data is described Coding Form. Cards

The input requirements of both coding 1 and 2 should be omitted if default

described on Page 38; i.e., data which includes the on Page 43; i.e., the Long

forms values

are defined in Table-l. are selected.

Example Problems: A new reinforced 36 of US 90 to satisfy

concrete box culvert is required the following requirements:

at

station

220 +

Environment condition Slightly aggressive Number of -barrels 1 Clear span 8 ft. Clear height 6 ft. Design fill (distance from finish grade at roadway centerline to bottom of top slab) 4 ft. Length of box culvert (along the centerline) 200 ft. Skew angle of left headwall 15 degree Skew angle of right headwall 20 degree Skewed wingwall angle Left front ~ 350 degree Left back 200 degree Right front 60 degree Right back 80 degree Project number 55030-3418 Location Leon county, US 90, Station 220 + 36 Based Page 38.

on this

data,

a standard

coding

37

form

is

prepared

and

shown on

II ~ I!,

:

-

z

0 V>

~

W

I-

0 LU 0 0

0

-.J -.J

I-

~ >-

L..J

.u

..J :J U

-~

~LU O~

<:1:

~

1-< Z>

(-::>

u~

~

I

-J

X

-~

w

Zz ~~

~ z

,

-

,U

~...: O~

L..J

~ a u

z


~

I-

-'-Z \.1,.><2

a::

-LU3

~

-

'6 ~

J .

-

-

-

~ ~

Zl-o ~Ct:u ~LU

>-

-I>LU

I

--"

O~I-

uO~

X LU

~

~O;)~

I-

U


G

><

Z~Q.

~

--Q.

I-

~~<

<:)

o~ ~LU'"

<

.« .a:::

-I~ I-~<~~ C-~Z

I-

~

-1_<

O-lOUCt: Z<-I.O <--ILU~

zo~OiN t.:>z

«

LU 0;)Ct:0 ':;;
.L1-.!..

0

:z:

==

3:>Y~~3HJ.O'.'.

I

~

2,

'CO <

I~



Ct:

's.'Ct:2-J", -10,.,1-~~ G~

,.,I

U~O_I-

~Ct:-I

r-

UCt:U

-<,:;; ,.,

LULU~-Ct:~I-

N

Ct:°o~~

Z

OLUO"I_-I

0

W

-< ~

~ I-

ffi >

~Ct:~I-::>

~

I

;

0W

°Vl t;;~

i

Q

°zo
0 g U -.-JR::8

<

..

~I

,.,~

c,"c~

L1-

..-~ ~ u ~<

~a)

~z «-

..J.U Y' -~ LLJo..~

I

I :'

~ ~U

~

.I

z

-

~o LI.J~.. -I

-

JO 'ON

~

'

-1m

I

S]XOI

IN]~WlAN] 1~13

~

LI.J<

--;: ~

'ON J.~3A'n:>

I

,

,

~~

cr: ~:

I

-

~

~>

2::>

~ a

w

~~"'ou
U ~.3-1.3~

I

I

zz.au

..Vloo~c5

0-L1]t>

-

~

-1m

0~g8~ z::>o

~

-

...u ...< I-

a:: ~-<-ICt:I-Z'""'~.=~~
-

~ ><

ZLU<~LU

Q;m

10-

~>-=

N 0"1

I

~~

t.:>U

I-~~<...I'

~

.LNO~~

;1

VI

00;)

a:::

lI,.:

I

0>

V)

z:

-

~3110:>

~

!

OI-OOLU 0 LUCt:-I

<:)

I

I

O;)LU

O~>-u Z~O;)-IZ

C-

&I

~ ...

LU~~2~ u5.

<:) 0

~

ii

NLUZI-I-,., 1-.

z:

-

-

.Ct:

Ct: ZLU O~LUO~

CI:)

-

-

-

-

~

~ I-

<

W

-

0

VI

~U

0

;:: -< u

Z

'==LU

:z:

-

-

z

0

~

-I

<

:z: ~

I

-

vo;

'ON 1~3A'n~ ~

38

,"",_I ~

1 '""' I v I "'" I v I ,., I v I

. ~

0

0:':

0

101< ~nI

0

ZU

.

~

.

'5 H

~ .I.J

~

\D M

g.

0 N N

+

H

~

'0 \.4

[/J

~

0 0\

't1

~ ~

[/J

~

.I.J

~ 8 u

C/)

§ IoJ

..1 00

.aJ

:s

~

.aJ :s 0 rtj ~ ~

'8 ~

.aJ {J)

Z

~ g It:

II)

0 '"

r.I Q

..

II)

g ~ 0 Co. 0

.UIII a: 0

Z H

~

~

ffi

Q

0

I&.

Q

f,] :..:

It: r.I

>

..J

~ U It:

0 ..J

N

~

><

0

:..:

rn

aI

I

.(a: ~Il.

N \D

""x

0.( rnx

~

0

0

..

N

o~

~ ~

0

~a:

0

~ :I:

~

0 N

~

Ln

0 M

N

~~

0 0

Z.(

\D..

.x!'( ~

M

N 0 Q)

0 \0 0 \00 N 0

~ Q)M

...N

'8 I-t (/)

~ Il.

II:

~ U"I U"I Z cn

~ '"

0 0

>-

. ... ~

.;> .~

.0 .U

..

~

~<

fo

Z 0

~ ~~ Io1U ~< tllnI

.. .~

~

0

-~ ~~

0 0

~~

0

~ fo ~Z t.J0 :.:~ tilt.,

~ <~ ~o. 0>0 Zfo

0 0

IIIrn

0

..

0

Zo.

Il.j

~

~rn

I M'

39

~ 0 0 N

0 0

0

Ll\ M

t.,< O~ 0 .< 0101 Z:r:

..:r:

~fo PX U~

. ~ t.J ~ tII

~~ ~~ :r:> foO OU

tII

~~

:r: fo 0 nI

fo 0 nI

0 Ll\ N

H

~

fo

III

Z

0

.

~

-III ~.(

~ .. ~

~

0

\0

~

aI

.o~

r.1

(/)

M""

Il. rn

.

. ~O ~ .~

0 0

-0 ~rn

-

:I:

0

0 N

0 0

0

tllnI

I&. .. .-~

0 0

~~ tilt., ~ .~

'(:I: .ou

~fo OZ

~~ ~t.,

~

-

0 0

~

OJ!

Il.

:I: ~

~ Z

0 M 0 '" '"

...

a:x...

.~

M

~nI

~

ZO

~rn ~~

OJ! gJz

...~

~

Co.

.

a:rn

0 N

rn a:

0

H

0

~

~

It: ~

r.I

:I:1l.

0

0

o~ 0 zu . 101< 0

0

5. .(

~

.

~

~

I&.

0 0

0

.

0

0

~

... ... ~

~ ~ '"<

~ :I: 0

~fo

101~ ~t.,

OZ ZO

'P

Hfo

. .. ~P

.O~ .Z~

.H<

.~~

~

0

0 I

0

U~

Ll\

t.,0 t.,U

N

>0 <>

.

~

HOO< c..HH~ ~~ c..

Z ~

H

0

~..J

X ~ '" f,j

H

~

" ~

,:,j

N

CI)

,0

0.

CI)

~

Z u

0"" ~CI)

CI) ~

CI)~ Ol!:

0

U

>-u .oJ E--<

~ 5>". o.oJ 3:

ZU 0""

ffi ~

o ~

.oJ[/] ""

I!:

E--

Z

0

< ~ 0. 0

<

~

~.OJ

I!: > ~

E--

.oJ

0.

U 0

0 I!: .3

Ll10 "'N

..J -a: ~ Q

ZZZ HHH

0

I!: tJ

><

0 IQ

[/]

~E-°ffi

s~ ""0 E--I!: <

3~

X

tn D: < I 133 I I 0 I Z I HI tI I D: I 0 I r.. I Z I

HI [oj D: D: 01 r.. D: [oj :> 01 tI [oj Eo[oj D: tI Z 01 tI

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

"""

~< :I:~

~< :I:~

~..: :I:E:"

o.~ H ~ ~ 5

o.~ H ~ ~ 5

o.~ H ~ ~ 5

o.~ H ~ ~ 5

rz.

rz.

rz.

I.;

I.;

\D

"

"

"

~

~

~

~

Z

Z

Z

Z

~3 j~

U1

I.;

"

H

H

H

~

{/}~

,.

M

M

~

-..~

"

IsJ MQ

~

~

I.;

~

.:~

"

O..J..J

ZZ HH

1':1': r.Ir.I

~~ UU ~~ ><2: bI""..J

00

~~

c..c..

r.lr.I3 I':I':~ 1':1':2: .c.c 00003

(1)0

0 N

{/)f,j

(/)

.0 ..J (/)

H (/)

~

~

H

U

>-

.0

N

...

U

N

N

on

,

,

~

M

c..

0

M I

0 M

0 .n .n

P:

~

cn (oj

I I I Eo- I It: I (oj I Il. I

~

0 It:

I I

Il.

I I

~

I

0(

I I

~ ~

It:

I

IQ

~u

~

Po

(oj I Eo- I

~:

{/)c..~

-..J..J

:I:~ E-ol': ~E-o ~tII

till E-ol Z 1 101 1

1':>-

~:

tIIO Cm ..JNU 101. ""1o1r.. >-E-o

1011 1 r..1 01 I till 1011

..JI':~

E-ol

E-o<

Io1Z

..J

I

,

Io1U"" 1':' Io1ZtII 1011 E-oOIo1 ~,

tIIUC

01

\0

N N

0 N

""

~ c.. f,j ..J

"""" 0

0

XZ ~H

XZ ~H

XZ ~H

O~

O~

O~

XZ ~H

O~

X ~

0

I.:

""

..,.

""

" Z

Z -a:

f,j>O

f,j>O f,j.

H ~

~

,

HHHc..

\00\""0

{/)O

c.. f,j

, aI

..J X ~

.f,j.

..J

f,j... 0...

Ll1

O. .Ll1M

~~(I)

0

I.:U

c..c

M

"" """"

"

f,j ..J..J O..J Z-a: -a:~

(/) ~ ...J

Or.) Z..J

0-a:00 ~~~~..J

:.:

X ~

0 Z

Z Or.) ~HI.::': X{/)::l ..JOZ{/)

."'..Jr.)r.)

~ r.) (/)

""

I.:U

f,j>O f,j. I.:U

0

001.:

f,jN OM

f,j"" 00\

(I)

O. OM

\0

O. \0""

0

f,j>O f,j. I.:U

f,j0\ 00\

...aI

O. (l)M

N

"" f,j ..J..J O..J Z-a: ~~ ~ ~ :.: (/)

f,j

""

f,j

~

..J -a: ~ 0 Z H ~

40

N

~

..J

r.) :.: (/)

~ :.: (/) .Z

0

~ ~ ,( ~ ~ Z H ~

~ 0 Po

"

"

"

~r..

>.

>-

..r--

r--

MM

...

II

LJ)

~,( Or.1

III X ~~

0 0

r..

-HI

~

~

~ X

..J -a:

r.)

f,j ..J

H I.:

H I.:

~

0 ~

f,jl HI ~I HI

~~

~'

PP 00 11.11.

~

P 0 11.

,

I

I

~ r.1 ~ ~ ,(

III

M

e..x

~

ffi~ u~ ~ Z~t/J ~b.~

::>O~

i8~ ~ ~~~ ~Q

till

r.11 HI

ZH>~t/J~ ~e..:.;

Eo-I

~: PI 01

I r.11 Eo- I r.1 I

I

U Z

1 I

,( ~ ~ Z H

0 U

I I I I 1

~ ~

~

~

~

~

~ ~e..

~~

~

~ ~

I

~H

M

~

z ~

Z~ HO

" o<~ QIIIC3

II

Eo- I

~ X

0

~

~

.~

U

Lt\

UU

xO~

~~

.b.,(

u

~,( 2!

..J -a: ~ 0 H{/)I ~

0

ZO H'C> 'C>Z 0

j~ : tII~ ..

0 Z ~ ..J

f,jl ~, f,jl 1.:1 UI Z I 0 I U I

I

~

N

z e..H

ZH Oe.. HU e..::> U~ ::>e.. ~t/J e..Z t/J0 ZU 0

111--

::I 01

..J

~

II

~

aI

c..

t/J ~ ~

r--N NO\

X ~

c..

c..

(I)

00

""

~

~

"

I.: -a:

.1.::': :.: aI

I.: c..

II

»

..J

f,j

..J O..J Z..J -a:-a: ~

U

e..

II

H

..J O..J Z..J -a:-a: ~

ffi

c

M

8 tl.

..

ZO ~O ..Jc..

" ZZZ~

~ e..

c::

U~

~O ..Jc..

0

~

0

ZO

I': I ~

""

"

~O ..Jc..

~XHI.: aI 0'" ..J

..J r.) I.: I.: ~ aI

~ c..

ZO

..J>< (/) -a: r.)0 ~ l.:aI '" 0 I.: 0 Z -a:~ ~ H aI-a:..~r.)H~{/) .:>r.)~r.) c..X (/) c.. O~ (/) 0 0 Z

'Z

~ c..

H

.~

on

~ ~

f,j0 ..Jc..

f,j

"""

~ c..

0

J

"~Z -f,j (/)U

N

, MLl1 0\ 00\ M

~ c..

""

H f,j~..J OO..J HO-a:

N(I)

, "'Ll1 0\ \00\ M

ZO

Z

>-

M

H>O ""U

X

"'1.:

\0

~

Ll1 N

~f,j OZ ..JHIo: f,j~U :> H ~OX

H>O ""U

~

.Z

>-

~

~

0 H

0\

"

':

. U

0

H

b. 0

c.. "

Z

~ ~

HalO

OMM

H>O ""U

.-MM

f,jalZ~

aI ..J

..J..J.c

000 000 0""" 00

H>O

"""

"

H

~

Eo-

"

""

...,

'"

""

~ Z

~

--

Z'Z'Z'Z'

c.. Ll1"'U

(/)

.c.c

~

I'oIsJ

...

:J:{/)

~..J..J

~ ~

0

~V 0><

:I:

0

~rz. -~

~ ~

Q

H

~

HHH

~ ~

g;~ Eo-:I:

H

~

"

\OMO

..JUU CIIOO ..J..J

~~~

N 0

.ZZZ

f,jO ..JH I.:

tIItIItII

0

~..: :I:E:"

"

~~O\ r..X

-a: '"

~

.~

Xc..

HHZ (/){/)H

Z

~

..J~ f,j0 f,j0

>< f,jf,jf,j 0 0 "

""

M

0 Z

""

.~

H

c.. 0

-a:-a:..J ~ -a: X~~~ O~~ HIo::.: f,j{/){/)~

""

.~

rz.

HO OZ

-a:

"ZZ..J

""

.~

I.;

~

f,j X

\Of,jf,j ..J..J" 00

III

NNN

UE-:I:

E--

~ ..J

""

CI)

U Z

~

00

c.. " "

~ 0

N~

E-< E I!: 0

0:':

-f,j~ (/)

~

tI)

ou

CI)~ >

(/) (/) f,j Z Z HU (/)H Z~

00 Of,jf,j

CI) \DCI)

0

"

Z

"" X ~ 0 aI

..f,j f,jH Zf,jf,j HI.: 1.:0\

5 u

< . E--

Z

0 .."

I!:

U

Z

.f,j

N

E--

M

~ c..

Eo-I

~:

::> ~OQ

~

Z

~ ~~.o: .0: ~~~ III

~b.~ ~~

U~

Q~§ ~e..~

rilt/JU

... ... :';HZ t/JQH

~-

(:JZ ffi';'

~~

t.1

e..

IQ~

t.1

e.0

MM I

NN

t..

I

0 r.. "-

I

0

t/)t/)

~~

~

I..J..J

U

E---

~ U

XI!! 0.:1

...~ tIJ

1

""OO""OON~~~~MNMMOO""~I N ""00"""" ~~~~O""""~~~I~M 0 ~ r--r--~OOO M M """"N""~

.00 """"'0.00 1 I

~

0.

(I) \D(I)

M< +~ oU

~~ ~ I ~t

N Nt.1

(I)

<

z < e.. e ~ 0

.;:.

0\(1) 0

(I) t.1

(I) (l)t.1 ;:.~

~

~

g

~<

2 ~ S>e.. :3: o~ Q Z

:3:

0

ue.. :I: ZQ t.1~ 0

~(I)

~

~ e.. Z

< t.1 (I.

~ >t.1

0 e..

0 ~ (I. ~ u ;:. 5

~ 0

~

t..

>< 0 III

(I) t.1 0 ffi

~~ ""0

e..~

sffi <

I

I

I

I

I

I

I

I

I

M

~~

no

0 M

0 IJ\ IJ\

M 0\

~ tb1

N 0

Il.

(.j(.j (.j(.j

rl

~~ C/IC/I

~~

NNNNNNN

uzz U

I

<~ Il.Io.

I I 1

(.j(.j

""'"

rlrlrlrlrlrlrl

XX (.j(.j

~~~~~~~~~~~~OOoOO

01

XX (.jW

ZZ

IIIIIIIIIIIIHHIHH

OOOOOOOOOOOrl

ZZ rl

(1)-

~:

(.j(.j

(.j(.j

(.j(.j

(.j(.j

C/IC/I

C/IC/I

~~ ~~

O~ O~

~

'"

(oj

N f/j

~~~~~~~~~~~~~~~oooo

f/j

~: ..:I ~ ~ Eof/)

~~ «

(.j

f/) 1 ~ 1 HI Eo- I I Eo- 1

::J 01

~~

1&.0

I

E-

~~~

~ 00 ~ Z

1 I I I I

\ONN~NNN~~~~\ONN"'\O\O ...\0 MMMM'"

M

M

Z

H

H

e..

e..

~

0

E:: ~

~ S ::> ~

r.J I.; I.; 0(

~

N

LnLnLnLnN

O""""O""""N

OOLnOOLnLn """"""NNNN""N""N""""N ~~~~~~~~~~~UOO~~~

bJ

(/)

~~ ~~

\0""" ~~~

(oj f/j

I

0

I.: b1 IQ

rlrl

Eo-

IX: I < aI

rl~rlrlrlrlrlOOrlrlrlrlrlrlrlrl

>-

1 1 I I I I I 1 1 I

a> I

~~ ~~

I,J ~ ..:I ::> 0 ~ :I: U f/)

I.:

... M

~~ HH ~~

~~

~

"0\ 0 "-

~~ I

>

Q z

0

~

I

(l)t.1

(I.

t.. 0"" e..

I I I I I I ~~~~~~N~~~~~~~M~~

~~

e...

0

NO~N~OOrlrlNNm~~~~~ rlrlrlrl

bJ

bJQ bJQ Q Q ""!II""!II !II f!II ff-:I:

10.0 bJ ~p: ~~~~~~ ~~~~~~

f-:I:

10.0 bJ"" ~p:

~~~~~~ UJ!IIUJUJUJ!II DoDoDof-f-f000000 f-f-f-~~~

NM

-bJ

bJQ Q ""!II 2;::3 !IIf-

bJ!IIbJQ Q bJQbJQ Q""!II

~""O

""!II""!II

X--!II!II

~ ~ ~~ f-:I::I:1o.0 ff-:I: Do ~~~Io.Of-bJ"" OO~~~bJ""O~P: f-~~~2;~P:~

P:n:Q~~~QQ 00::3~~~2;2; P:P:""""f-~~~bJbJ bJbJP:n:""~~~ 2;2;bJbJOQQQ~~ P:P:f-f-2;~~~~~ OO><>
'6 I.:

41 ...

bJ

f-

!II !II

~

:c EC-UZ

ECmmmm

0

0

I

r..

ZH r.J

0

r.. I

~EC-

I

I

I

I

..

M

I%I~

EC-:CI%I

U~

I I

MM~aI~~~~~~m mNm~~mNaI~~aI~l.m ON~m~~~~mO~~M~~~MM~~~~alMI~M

N

H~ ~

UIUI

fJ)fJ)

1%11%1 ~~

It!It! ~~I~ COO\Ir-MMIr-COCOI\D 0\,"",1,"", I,"", IN

INaI I

~

fJ) r.J HI e.. HI

I I

,I -e..1 XZ e..H ~

Ze.. r.J~ ~-

r.J ~ ~ e..

I

OOr--~,"",,"",,"",,"",r--ON\Dr--ON\DOOOOO,"",Or-'"""""' '""' '""' '""' I

I

I

I

I

I

I

I

I

I

I

I

I

I

'"""""""""""""""""' I

I

I

I

O\O\r--MCOCO~O\~~NO~~NO~~~~OCO\DN '"""""' '""' '"""""'NN'"""""'NN

I

I

I

I

1

~N

OOOO,"",,"",,"",,"",,"",,"",,"",,"",,"",,"",M,"",,"",,"",,"",,"",,"",,"",O,"", '"""""""""""'

'""'

~ZZ HH UI


~~~~~~~~\D\D\D\DQQQQ~~~~QQoo

NNNN "" XXXX'""'"'"""""'XX r.Jr.Jr.Jr.J

r.Jr.J

ZZZZ

ZZ

IIIIIIIIIIIIHHHHIIIIHHII

"""'"""""'"'""'""'"""""'"

r.Jr.Jr.Jr.J r.Jr.Jr.Jr.J fJ)fJ)fJ)fJ)

""'""'"""

e..e..

0

01

00 00

r.J1 e..1

~~ r.Jr.J r.Jr.J e..e.. fJ)fJ)

H

fJ)fJ)

oe.. ~O

f,j I':~ ""00

e..

0"".

f,jr..~ I': f,j ~!:j~ z~< 0:;) III

~f,j00 ~~

~~

~:I:""~:'::I: ~

ON~~ON~~OO~M~~~~""N~~N~NO

~ Z

~I':ffi~~~ ,..,<~~o~ 0 III

.

f,j

0

'-:I':
~~~~~~~~~~~~~~~~~~~~XXZ~

H

H

e--

::. 0

0 ~

~ ~ ~ ~

~ ~ H :3:

,..,

~alIIIO~f,j O~.'" ~ ZZ:l:f,jZ f-

e-.

~<

000 UZ

~. Z~U""

.

~NM~""NM~""NM~~~~~""NM~""N

~:I:

~

Z

0

Ur..~~

1IIr.. 00

r.J

e--

~OO

0 :1:'-: ZOO~~f,jZ """"OO~<

MN

""NM~

<

<~~~ -~

""N

fJ)

DJ f,j H

. ~ ~

ZOI':

e..

IQ

~ ~

:;)1':

fJ)

~

fJ) I I ~I ~I ~I~< OIr.J3 e..1P:~ IP:Z

0

e..~ O~

~~~~~~~~~~~~~~~~~~~~~~~~

r.J

r.J

rj:

33

fJ)

P:

~

< e.. ~

~H It! 3

r.Jr.J r.Jr.J

r.J

N

I

I

~~ <~ 33 ~~ ZZ HH

P: r.J ~

I I 1 I

I

HH e..e.. ~~

~~

NNNNNNNN """" '"""""""""""'""""

I 1

ZI
~~ I

fJ)

It! I

Z

-O~OO""

~Z

I':

1':~r.J0<1': '-:'-:~~III< III~

I/J

f~:.: ..J ~:.:ou fpj fOUO:f~:':f~:.:OUo:< f-f-o:
III

Or..f,jO

r..Z 0""

000 Zr.. 0r.J0

~Z~III

~ OU ::>r..,.., 000~~0r..

~~

~ ~ :I:

000

~ <,..,M ~Z ~~ 0

I':

OOZOO

""r.Jr..

""IIICI)~~

,.., :l:O:l:r..:.:O ~Z~OCl)"" 0"" ZOI':I':I':O ~ZO
42

. OO~

1.)r.J >

~

r

J.NI~. '.';)].S

~Io

r

°U'"lU'"lOO-JW 10 U'"I U'"I 00

~N lN~-~-~~ N ~ I.n <: --'~ I.n 1 lrl ~:I: :I::I::I::I::I:I.nZ (L :t::t::t::t::t:VlZ

#

:z ~

J.N]...NOWI1\N]

V)

0'6 =N

w

<3:

~ :z

§~

!I

i~ ~Z 2

!5 .a

!i

~

N ro;o;:rU'"lI.,!)CX)O" ro; o;:r U'"I "'" CX) 0" N: V' VI I~ Z z

:z w ~ ~ ~

~ ~ Q 9

z: <

,

~.

~ ¥

, >< <

0 A

~ ~

< ~

-J

coo:>

:z cs « w

U

~-

uJ

~~ ~ -I-

I.-' aJ <

(.)

t~ ~

>< ~ ~

:I:

>< 0

m

~
...,-00'-" ~ a:I~ V'

2" ~

aJ

0-< ~..J

,

V'

W -J

.c4J~

~~~~~ .-, .48XI4

ij

~S Soil]... ~I] """ 2-~ 00 ININ II' A. -a:. a:. r;:;r-1I

0 J~¥ -u.

I:L C-

<°J.4 O'l>

<.J.J O.z> ]'JWYM'wnS ]'JIj.,H'ljns OYO, ]1\11 0"0' ]1\"

-'

'" "'~~ :~

~ I

---z

~~ !'¥ =v-

~ ..~~ --z

I V'~ o ~V'

0

~~I-~

-->~u,

.~ ~ 0 ~

~

C~ !'¥

~

~

~ ~:j~~.= _.J >~

~

~

~_.JO <--QJ-'""

~

--Q Ii

. --¥

:z: ~ ~

0:

10J

V"I

~O

S '~d~OJ w z

~

C-

:z: ~I

<:(

tn

~I

01

~-J .-J~

~

az

<000'09>'~lS ~ '"C131A ',,"'" .~NI3~ ~NI'3~

'< N g:: d

.:: u

V"

~

«

-.J

w

~

zz Uo Z< 00

o~

lV')

Q:

~

.<.,

.~~

00 -< ~ c~ O<~~. .c ~t ..JO..J~~ c~ ~Z><~tr3 -.I ~«~..J" .c

~ ~

> ~ l3= 0 V' V'!

:~ N (

<

a-J

J.I~

I..:>

!

a: -.: -~

;

I-~ zu "'~ <..:1<

12'" ~a:I

Z

I..J -I

=--~

-<..:10 :0 L.I.J UJ

~

~

~ ~ ~ VI V1

1-1-

zZ

~LI..

...u ..,< ~~

~

~ ~ ---

-

-Jao

-.-'i ~ ~ ~ i ~ b

~ I-

:t: <.:> w

~

-!, CQ;; ~ ~

--.-~~

(J.~I 'J-.' (.L~I

NOIJ.ISO~ ~ NOI.LISO~ NOIJ.1504

8

I--

:t: ,"' ~ W '~

==~

~,-i Ii~

,:

~-

'=

~ 'e ~ <

~ ~

~

9:

~

.'~ ~... 0.'-'. _I gc~~It It ~ ~ _I

N

43

~

~

~

~<.:)~ dGj-

~ -..J

.

I-

I~~

~

II. A)NOIJ,ISO. IJ,~) NO'J.I~O~

<

wOZ

;I:

!'¥ H'X-WOO'4 ON .

c::

W i~ ~

LLJ II..UI

x

C~

'"

oM oM

NOI$N].L)(] .L~31\'n:J

~.

I--

G --

~

II'~

NOIJ.ISO~

'
Q:I--

~~I

J.NOII~

'"

I:I:: I:..:) a..

U-J

a-~1

11.41 CJ.~) NOIJ,ISO.

8

0

':-JC w-J w!

l-

c

~:O~

'O~ :..JO

(ISd)

w~1 a:: 8!

u.1<~

0<

~III

I-- zl

m

u.10

! Z 0 0 <0 1<0

0

~~!

_I

ro; ,

II]AO~ ]~y~

48XI4

<

(ISd)

W]I\O'J

]'JYJW]HJ.O'.'.

"' ~ ~

I--J

:OOv£>

-

48XI4 "oKI"

8

V>

~

'"

-
01

~ a:I ~ ~ z

'"')

0 c.. u..

0::

"'~

0

S-..o~
LJ.(:)

!~

48XIA

t-I-

..-

Otl

~Xy"

>W W Q:

0

-J

I-I-~

"""IHI"

IJJd 14;). ~II ~II

"""INI"

:II ~I

V')

..-

0

C4dJ l~dJ .'l91 ~,9)]~nSS]~d ]~nss]w. W]J.'. ~]J.Y.

l-

:z:

A 0

I-=~

aJ

-J < -J<<-J < ..J ~V"I ~ V'

-J

v

~ Z

.A

(.)

~

l.1-

00

~

C)

< u a

'

0=0 aJ

~ --'

uJ

~.

z a

~

A

I-~o Z I-

u Z

a-

w >-l

0

~

H:JNn"1H

~e ]1nO]MJS w'& 11 ~ M ~f ~ 8"11$

a

a::

:I::I:

'

:~

a::

. !~ "1.1

11= 11= 'X"1~ 'X~~

,

I-

"""IHI" [email protected] -J~ ,~a:I ~~ ~ ~ I:I: ...~

:1 I

~

I--

:z

!~:1

-l -l

I

1-

~

UZ a-O

u

0

I I

~

-J W

~

I-

~ U

i-'-J

~

-<

.-J

~z «~ ~O-

~

U V'

~ -

S]XO& AO 'ON 'ON 1~3"'n'J

a:I

s~E ~ 3d4!

11.¥:)NI¥

..

. I':

0:':

ZU r,J<

.

.oJ1Ij

E-

+

~

0 N N

~

~

~ ;j

~ ~

H

~

rtj

0 0\

rtj

CI)

.-i

CI)

Q)

M -r-!

::I

~

~

~

§

Q)

Q

0 U

'8

2 ~

;j

0

Q) .r!

ro ~ Q)

00

M

M

~

I

0 M 0 on on

-r-!

U Q)

PI

'"

C/I

C

[,.

U

0: I-t

3

~

C

a: o.;

Ea:

~ :i '"

IIJ C

'8

a:

0 ..J [,.

~E--

Zr.J r.JZ

0

,X UO'" ..J OX

.r.J boZ ZI-t 1-t..J

CII r.J >-

ro

>

:l:Z

:I U

oX "'0

E--

CII >-

X

x 0

In 00

0:

~

0

~ Ual I-t< ~~

0 U"I 0

..~Z '"

<0: r.J0: :l:1-t CIIE-CII

0 Z

0 ..J

O:E-<0: r.JU :l:Z ...~..J CIIU

r.J:I: E--E-r.J~ O:Z Ur.J 5~

0

0: r.J :>

0 N 00

<

M

~

N 0 00 0 \D

0 \DO N 0 Ln

00... N

'""'N

Z 0

H (/)

a: t.J

>

..J..J H

r.Jbo :>1 I-tO

(/) Ilo

<0

00:

<

1oJb,

>

E--

.I-t ~X r.J0 0: r.J 0 0

U

0


U

CII

O:..J
0

"" 0 CD ... CII r.J >-

0 0 "" M

U..J I-t< :I:~ E-r.JaI ~j CIICII

0 "" N

.1oJ

0

~

..0

..~

r.J>r.Jbo 0 Z... 0 N CII

:I:

E-CII

..J. 1-tE-O~ CII

0 0 0 \D

~

0

0 N ...r.JaI

0 0

..:I~

>< .

...

0

...~ c.. H

44

.

N

.oJ 0:': ZU r,J<

0

~

0 Ze.. . 03 0

Eo-

X

U

0

N

H r.I

0

gJz r.lH I':~""

~~ cnx

~

.0

0

.. ..

~ 0; 0 0

N

~

0 U1

~ . 1oJ:J

< 0 ..:I

0 0 0

0

I

N

0 0 .

~1Ij

.oJ~ :3:

.

'"

.

0 0

.

0

~tJ ~ :.:< C/11Ij

:3:

. 0

.

.

N \0

"-

0 0

0 M

I':e..

:3:Z r,JO

0

\D

:':1': .

C/1~ :3:

QU ~I': .0

~cn

0

Eo-~ z<

\0

...

0

:I:

0

IoJ

.

OZ zo r,J1':

0 0

N 0

0

U

U

'"

<:I:

IoJN .

O. 0:0
1

0

I':cn pjcn Eo-r.I
0

Z

N

0 0 0

.oJ

..oJ ..ou

0 U1

0 N

ffi ~ gN

~~

N

Eo-

U 0.

0

O~ U

E--CII

:I: Eo-

Z

0 U"I

~ < c.. :1:"-0

0

~

0

~

O:..J r.J..J :>< aI O:CII O. Hal 0:

~ cn

0 0

0

Z..J

0

..:I1oJ 0 "':I: . {J)3 0

IoJ e..

0 U"I

I':e..

.oJe..

~ pj ~

e..

<..:I

5..

0

..:I

U.

U

c..

~

cn I':

IoJ '0: E--r.J Z:> 1-t0

0 ~0

.

.b,

< o. 0 Z

I':

0

0

..r.JE--

O' 0:0

"'X

0 0

0 ..:1..:1 . H 0

~;<

Z

(/)

...

0:>< « alX

CII

..J

U) U)

~

0:>< «... alX

..

Eo- 0 XO . 0

..UIII

..:IU oe..

0 0 ..J r.JCII r.Jbo E--

O..J

0 0 N

""

UI-t

0

UCII

1/\

0\

NZ I-tl-t CIIX

CII r.J >-

r.J UO I-t< :>0 O:..J r.J CII

Q)

0 U"I

z< I-t~

E--r.J r.J 0:::>

.r!

u

Z

H..:I

IIJ

..J

0

U..J ...J


.-i

.

r,J1':

OZ zo ~~

ffi ...

Z

E0

~

ro

C/I r.J

E- ~

t/1

tI)

Z

~ j

Q

z

~

..

~ ~ a: 0

0

0

:3:

z0 \D M

0

.~ Eo-~

..x< 0 ~ 0

"- '"

r.l3

cn

.111 Eo-<

..o~.

"r.I

~r.I

>Eo-

U Z H cn

.. ..:> J

0

..U

M'

..0

H3

I

0

0 0 0

0

.oJ :3::.: r,JU :.:<

0 0 N

.oJe.. :3:Z ~O :':1': C/1~

0 U"I M

..

C/11Ij :3:

0 0

IIIcn

0


:3:

0>0 Ze..

:.: C/1

III "-< o~ Eo-cn

0 0 . 0

.. ...

..:.= .oJe.. OX Ur,J

.

.oJ

:3:'"

Q .< Or,J

g: 0 IIj

Z:'=

.:3: .oJ

~~

~

1':1':

e.. 0 IIj

0

r,Jr,J

U"I

e..0 OU

N

r.J1': Ur.J

0 U"I

~O ~U

N

:.=>

:3:

e..

.0 Z'"

0 e.. Z

~O

0

.0.oJ .Z.oJ < .:3::3:

0

I

~

<>

.

rOOOOOOOOOOOOOOOO\Or-r-O\NOOOOOOO\O""""NN 0-Q)Q)Q)Q)Q)Q)Q)Q)Q)Q)Q)00000Q)\oo\MQ)",,00000 II~OOOOOOOOOOOOOOOO""r-O~r-""OOOOOO""O\MQ)N ~>OOOOOOOOOOOOOOOOOO""""""NOOOOOOOO""""N fJ)

I

I

I

I

I

I

I

I

I

I

I

I

I

U10U10U1 "" I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

r-

III .""""""""""""""""""""""NM r-~OOOOOONN""""OMOOOOO M~OOOOOOOOOOOIllIll""\DNNOOOOOIllOIllOIllNOOOOO r-~OOOOOOOOOOON~\DN~~OOOOON~M~~OOOOOO II>OOOOOOOOOOON""""""OOOOOOON""""OOOOOOOO , ,..., ,

U+

~ 0 III

OOIll\DNr-""OM""MOOOOOOOOOOOOOOOOOOOOOO '~I11""~O~~""O\DO""OOOOOOOOOOOOOOOOOOOOOO

N~~\DMNOONMM~~OOOOOOOOOOOOOOOOOOOOOO 111>000000000000000000000000000000000 0-, , ., .., ,

Z

I

II

I

I

I

,

,

,

,

,

,

.,

.,

I

S ~ Eoo

~ Eoo ~ 0 ~

~\D\D~\DM~O~NMOOOOOOOOOOOOOOOOOOOOOO IlI-N~IlIMMIlIN~Mr-~OOOOOOOOOOOOOOOOOOOOOO N~Or-IlIM""ONMIlI\Dr-OOOOOOOOOOOOOOOOOOOOOO M>""OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO .-,."., ,

~

I

~ ~ Eoo

~ 0 Eoo Z

~

I

I

I

,

,

I

III OOOOOOOOOOO~~~~OOO~~~~~\DIlIMNONMIlI\D~ r-~MMMMMMMMMMM~IlI""r-~O~r-""IlI~IlI\Dr-~~O~~r-\D1lI 'Q""""""""""""""""""""""""r-M~~O~~Mr-""~Mr-""IlIOIll""r-M~ \D- >OOOOOOOOOOON""""OOOOO""""NNN""""OOO""""NN ., , ..; , , , II

III

~

~

, I

:I:

~ ~ .0: ~ ~ Q

I

I

I

I

I

I

I

,

,

II

I

I

I

I

I

I

I

I

I

I

., I

r1lI~~MNN""OO~~""~OOOOOOO~""IlIIlIOOOOOOOIllIll '-IlIIlIIlIIlIIlIIlIIlIIlIIlI~~IlINOOOOOOONIlIIlINOOOOOOONIlI ~~~~~~~~~~~~~~IlIOOOOOOOIll~~""OOOOOOO""~ IIX""""""""""""""""""""""""OOOOOOOOO""""OOOOOOOOO"" -..,..,..,..." I

,

,

I

I

I

,

,

Q

~ 0 ~ ~

0 0

.OOOOOOOOOOOON~~""~""~~NOOIll~MIlIN~M~IlIO O~OOOOOOOOOOOON""N~r-~N""NOO~~~r-r-r-~~~O II-..~OOOOOOOOOOOOM~M~O~M~MOOONN~O~NNOO , , .., , , ., , , , , ...,

,

,

, .

~XOOOOOOOOOOOOO""NNMNN""OOOO""NNMNN""OO

.0:+

~

0 \DIlIMIlIr-r r-Nr-MMMMMMMMMMMM\D\D\D\D\D\D\D\D\D\D\D O~MIlI~~r-IlIIlIr-IlIO~~~~~~~~~~~~MMMMMMMMMMM ~-.'~M""~\Dr-r-\D~NONNNNNNNNNNNNMMMMMMMMMMM XOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO , .,. ., , , , , II ~

I

I

I

I

I

I

I

I

~ """"M~~""\D\DMMNNNNNNNNNNNN""""""""""~"""""""""" O-\DIlIOO\D~~~r-\DMMMMMMMMMMMM\D\D\D\D\D\D\D\D\D\D\D 0~~""\D~00~r-~0~~~~~~~~~~~~~~~~~~~~~~~ .-, , .,.. ..., ..., ~

~XOOOO""~OOOOOOOOOOOOOOOOOOOOOOOOOOO I I I I I I I I I I

, I

I

I

I

I

I

I

I

I

,.. I

I

I

I

I

,

..,

I

I

I

I

I

II Eoo

M 0 ID N ""~\D~ONIlIr-~""MM~~\DM\DM\D~~M""N~~O~O~~N"" -~\Dr-~~""NM~IlIr-~~~~IlIMNMIlI~~~\DMr-r-IlIOIllr-r-M\D OQIlI~MNN""O~~r-\D\DOMM~""~MMO\DIlINIlI~\D~\D~IlINIlI Z 0-"... , ., ., , ., , ,

0 ~

~ ~

~

,XNNNNNNN""""""""""O""NNMNN""O""NO""NMMMN""ON I

I

I

I

I

I

I

I

I

I

I

I

...,

.,

II ~

> III III

~Z""NM~IlI\Dr-~~O""""NM~IlI\Dr-~~O""""NM~IlI\Dr-~~O"" Z

Z

N

Q

II

~

,

X""""""""""""""""""""""NNNNNNNNNNN~~~~~~~~~~~

Eoo '" ~ ~

45

,

,

,

..

In

<.O""""r-.\D\D~~

L/lOOL/l

>

MNM

MNM 0000

.

Nr--CXlr--

MOOM

~

~\DCXICXI

\00\0

.

Z 0 H

EU t.j

rn .r--"""",.,

r-Mrr

.r--~\D~ >

0

5" rn

H

0000

<

Eo(

.CXI""~r-r--OCXICXI

In

""

U

III

t.j In In t.j

~

..... Uj

.

S H Uj

t.j

0

I':

~ ~ 10. 0

0(

3

r--CXlr--r--

.CXI""r--r--

,.".".".,

NIII~NNNN

""X~< o

00r-00

"'M'"

Or-O

""\0""

InNNN

1'.\00\0

"'

,

~CXI,.,

III

~ "'r-'"

0

,.".".".,

M""M

',,"ONNNN

rn. < ~

ONNN

o

.:1:P:

0

,.".,CXI

""°00

>
0.",0.U"1

"

~~O~

~

""'

-o\No\

-~M~

.b.

N

.

..II

II . X...

\D"'N~

\0

e..X ffi t;-7t;-'l(

o. x. X

.00

.e

.~xXP:

,

CO \0

~O~

~ "

~ ... .n ""

"" ,

I e..

.0

:

..JXCk:

..,3Xct:

.E-HE-

.~H~

It: 0 ~

[..

I

{/)

a: 0

U ~

E-{/)O\ [oj

M

aI'" .

~{/)O\

~{/)

E0(/)

a:

NO

{/)

+UIl)

[oj

aI"'.

~>~

j{/)\O

0

46

'Uo

j{/)O

alN~

Q

aI{/)

{/) aI

~

U

t/)H

~~ ~t/)

~ ~

I,J

I,JNLlI""'" UH

Ht/)

~

Il.

N~

~Do E-11..

U

I

t/)

0

~~rlrl

I%I
N

~

5z

N~ aI{/)

><

:I:r-

P:

!IJ n

DUO 0""

ZUo ",.

[oj

Z>N

~ ~(x)(x)rl ~

P:

(/)

<

~ 00\0

P:

H

!IJ

I

~?;

Q

I-t

"'0'"

~ alN~

Q~
Ul,Jrlrlrl

E-{/)O\

ffitJ) ~ ~ :J

E-

[oj

~Uo

U

~~

><

~{/)O\

"'u ~:J

~

Nil)

~{/)

~

It:

E-ilt:

H

E-

aI'" .

~bJ

~

Inm

I

Eo-

Eo-Q

Eo-

II

tJ)

.:!{/)r{/)

Q bJ

G H

\DO\D

Z 0

OtJ)

(/)

!IJ

\00\0

000

[..H

!IJ C

\D~\D M~M ONNN 0

""'

r--Nr--r--

0

NO

~'" . H

Z

H (/)

~

~.e..r--~r--r-.<

g[..0 tJ)[..

~ 5

E'-\D.of\D 0 .of

Z

+ alUIl)

OU "'H

.oJ

~t/Jr--mr-

~Ilo, ~(I)O H

~ It:~

(/) !IJ ::>

Ln\DLn

~[!Jo

NO

«I)

Eo-

C !IJ !IJ U >< !IJ

L/lML/I

"'NU"1

~

'6 H

P: U

IDNNN

r--~r--r--

:3(1)0

G H EoH

N""N

(I) .-IP:\D U
I[!JO Inll.,

.oJ 0

000

e..r--\Dr--r--

o~~

0

"'\0'" "' "'r-'"

~ cn

..3\D""N""

II

""0""

0.

000

I':

~

or-o

No.N NMN

NNNN

H

E-

(/)

!IJ

::> .oJ

""NN""

In ..1

NOON

"'L/I'"

NNNN

{/)

:I:r-

N

aI

Nil)

~{/)

rl

I

~

~ bJ

':;.':3

m

mbJ

-

>

0""

<

C

O\m

Ix: 0

m bJ

mbJ :J1x:

Eo"'" '" ;

0 ~

m

8 :t:<

~

0"" Eo-

~

c Z

~

~0

\DCojCoj

~

0

~ ~ EoIx:

<

Ix:

I I

r..

I

Z HI r.I It:

I I

Eo-

It: 0 r..

I I I I

It:

I I

0 (J

I I

:I:

ZC 0"" bJ~

~m Z

0

bJ >

0

~

'"

><

U m

:J U

0

Ix:

0 bJEo3Ix: III o~

~

5~ ""0 Eo-Ix: sffi

<

NNN

II

00

00

UU ><2:

~H..J

"""

{/I

2

S

~ 0 IQ

I.: 0

" ~

Z 0( ~

~

M

M 0-

"'-

0-

co

"'N

co

t/)

I

!oj

I

II:

HI E-o I g; I !oj I

""1.:

Coj ,,~-

I

!oj

.., 0

'" II:

~:

, 1&.,

ClIO

g;

II)

.JI

!oj,

01 -I

""!oJ1&.

Il. 0 ~

{/I (/) ~ ~ X ~

!oj.

.JI':CJ !oJUH

E--I 1':1

!oJZCII E--0t.J CIIUO

,

~ Coj

I.: I.:

\D~~O

00

""

E-o 10,

>-

.

"

!oJ

.Z >0

H

N

!oJ

0;

~

U

.~ U

>,

\D M

...~

N

LlI

LlI

~

M

to.

0

N

U

N

0 M

NO) N

~ \O~ M

O~

~ Co.

~ to.

~ to.

~ to.

~

\D

N N

0 N

~ II

II

ffi8

ffi8

ffi8

~to.

~to.

~to.

~to.

~

""

..,.

""

""

~

0

M

""

~ OCoj!'1 ~""I.::': X{/I::I ~(7~{/I

>CojXCoj ~X""I.: IQ Oil. ~ .o.~CojCoj 0 00(00 ~ ~~~~

to. 0

0)

I.: to. ~ to. Coj ~

~r.. >. ...u

~

Coj

47

""

"

III~

~

~ C Z

j~ : ClI~ .

Z~ 0(0( ~

Z~ o(~

!oJ ~

2:~

~

~

2~ ~<

~ 0

ClII !oJ I

0 !oJ III:I: ~~

0 r.. ~

HI ~I HI

:.: IQ ~ Is. Coj ~

~ :.: {/I

1.::':

~

~

!'1 :.: {/I

~ ~ ~ C

.Z

to.

00

~

~ X C

~ :I: C

I.:

I.:

~ 0("'" ~ 0 ~

II

ZP:tIJ OP:Q
U~

!oJ

Coj

~

~

!oJ~ ~>< ~!oJ

M

Coj

~ ~ :.: {/I

P:

P:!oJ

QIII!oJ

!oJ

P:t.,~

0 0 !oJ cn P:

~!oJP:

s:8~ !oJ

(/)I

Cojl "'" ~I

~I ~I 0(1 ::I I 0'

~ 0

I I

U

I

~:

It: It: 000011 00

0

iloilo

Ilo

~

!oJ ~ !oJ It: 0

~

~ ~

Z I 01

!oJ

It: It: <

III

It:

~

~ Z H

~

01

I

01 ~I
~I

0 ~

g:!oJ~

~Q ZH>O

!oJtIJ!oJ

~I

UI

, .

~

IJ1

""

!'1 I I.: I

~

MM 00

Cojl ~I

C ~

M

IQ

I

0( ~

on

",0\ r--",

~

~

r--

I.:

I.: 0(

o~ P: ~

..r-UU

>->-

X ~

~ C~

0

U ZP: HO ...~H

""

C~ ZO( o(~

{/I

Coj~ o~

Zu

.t.,< >0 .!oJ

""

C~

~~ tlJO

"

"

O)M

~ C~

~ Z 3

\O~

Coj ~~

~ ~ ~

H

OM N

Coj ~~

~

C

\D

'"8

"

..

I.:U

C

N

HU ~O U~ 0

2:

ffi8

I.:U

2

0

O~

Uf::

XZ ~C~

U"I 0.0.0.0.

Z

~Z ZH

C

XZ ~C~

.U"lM

to.to

C

CojN'Coj~ OM o~

~

~ to. Coj ~

""""

I.:U

~H ZO 0

rIJ ..J ..J

~

N

~C~

Coj 0""

!

"

M

C

~

~~O)

~

cn .J .J

C~

I.:U

U

H~

~U

C

P:

§

II

(/IC IQ

0(

00. 01

t.,

0

"

"-

I-t

Coj>O Coj>O Coj>o Coj. Coj. Coj.

~

!oj. I': 00

,

~

CIII

>-E-!oJZ

"

Z

MU"I

o(~

0( ~ C ~

to.:I: O~ (7 .~ OCoj Z~

~ Z

HI g; I !oj I E-o I

{/I

~:

E--<

""

M

to. Coj>o .Coj.

.~

~X CojO 1.:00 I.: o(~

1Q00..~Coj",,!oJ(/).'

1.;>-

~z~~ "

(/) -~O(

t.J1

OQ) .JNU

U

"

ffiCII

I I

Eo-

-~~

H 3

~

~U

:I:Z:I:~

""""

-!oJ (/)U

Z'

""

M

C

,

CII I E-- I

p. 0

I I ~ I 14: I

IQ 0

;I:~ E--I.;

II)

p.

X ~

~

CJE--

0 ~ ~

""

""""

OO~ {/Ito.~ ""O~~""

to. Coj

._~

"" "

0

{/I

~

~

~

0><

o.[.j

.~~

""U"I

Coj~~

X

Z 0(

OMM \0

~

;:'U

Z

I-t

~U

~ (/)

CojIQZ~

(/)

N

o~~

Z

I-t

MM

t'U"I N

~ ~ Coj~U > ~CX

~ .0

0

000 000

I.:

"">0"">0"">0"">0 t'-

""

CIICIICII 000000

"

Z'Z'Z'Z'

to.

"

0)0""

P:P:O P:P:2:

1':..1

~ U"I""U

to. to.

~ ~

;:,

0 I-t

e..

~~~ to.X

~~ ..J

..J..J< ~~3

[.j

e..

10.

~

£--£--

0

o.i:j ~:I:

:I:

I-t

.~~~

..J..J

ZZ

~ ~

~

m

Coj ~

P:P:

~

\DMO

Il. (/ICoj

I

Z

I-t

(/)

alal3

M

~

j..1 (I)~

I.:

10.

.."

..1 ~ E-o

MO

0

I.:

10.

~~ ~..1

..1

(/)(/)""

""

\0

II

e..

z

x

J..J

'"

e..

0

I.:

10.

"""

..JUU (/]00

«

II

..J

z

0

I.:

Z

II

«H

~

0

CojO CojO X to.

I.:

£

.-f

z

10.

~ 0 ~

0.

m

z

O~ ~~

O..J..J

I I I I I I I I

e..

-~

I

I

e..

e..

CojC ~ II

II

..J

e..

"

~0

II

00.. CojCojCoj """"Z

I I I

~ : ~~ r.I ~ r.I It: U Z 0 U

..J

X

~

II

e..

X

!oJ

II

e..

-Coj~ (/) -""C ~ ~

:.::.:

:c

0 Z HI (J It: 0

'"bJ

<

It:

Coj ~ ~ O~ U (/)"" ZX

to. 0

CCoj!'1 Coj(/)(/)~

II

~~ ~~ ~~ ~~ I-t I-t I-t I-t

(/)

0 IQ

~~" CC

~~~ X~~~ ~

II

§;~ §;~ §;~ §;~ (/)

~

"Z~~

ZZZ

II ..J

X

to." "

II)

I I I

UEo-

~

""N U"l0

HHH

0( ~

~ ~ S>o Eo- ~ o~

~

..J C/I

!D

.:J

Z

.Coj

~

ou

Eo-

""

~~

"

m

0

~

X

~

Il. Coj " O'",~ " Coj Coj ZCojCoj ""I.:I.:~ CC OCojCoj 00

\Om

<

r"\

N

'6 u

Eo-

~ to.

to. 0

Eo-

Z

t

to

z

bJ Ix: U

N NbJ

~~~~ ~

I I I I I

I

I I

~ !oJ P: P:

< III

~~:.: 0 ~OQ ~ Z <2:< ~O

~P:!oJ

Zt.,O H ~ 3 !oJ

U!oJ

Q~§ ~~~

~cnu ~HZ

tlJQH

..

~~

OZ ZH

I

1

..JE--

~

NN

(0-~

E-

~

e..

MM

bJ

1

0 0

1

r..

0

"'C/)C/)

In In

I.:

U

~-

~ U

XIII o~ ~

~

H

I..J..J I

MOO""OON~~~~MNMMOOM~I

N

""00""""

0 M

.00

~~~~O""""~~~I~M

~ M

o-o-~OOO """"N""~

""""'0\00 I

~

H

1

f/)

1

\Of/)

~j OU

~~

N N~

U

f/)~

H E-

Z

OH

..; EI.: 0

(9 H f/) ~

O\f/)

g

0

f/)

c..z 0

EZ

I.:

..;

'" ~

O

(9

>0(9

E-";

§>o o~ UE-

X

H

ZC!J

~

OH

0

E-

I.:

~~ ~f/)

~ >

"" Z

0

H E-

~

'"

..; B 0 H

X

U

I.:

IJJ °ffi

~E-

S

c..

0

~ f/)

§~ HO

E-a:

";H

3~

!oJ Q.

~

I WI .;j

I

0 Q

I I

0 M 0 L/I L/I

~

M 0\

0\ 0 N 0

~ t'~

>->-

I ,

I

I

II

I

I

I

I

I

I

e..e.. HH

e..e..

It: <

I I I

Q

I I

~~

WW

~~~~~~~OO~~~~~~~~

WW

~~

~

e..e..

f/Jf/J

~~

1.;1.;

NNNNNNN

:I: I U I t/) I

WW

~...~~~~~

~~

zz

~~~~~~~mmmm~QQoQQ

u ,-ce--

OOOOOOOOOOO~

"'fa.

!II ,

,

I

I

I

I

I

I

I

,

I

I ,

XX

1.;1.;

WW

WW

.c.c

ZZ HH

ZZ

I HH

WW

~ :I t/) I WI HI ~ I HI ~ I

XX

~

1/)-

H (I)

WW

WW

WW

f/Jf/J

f/Jf/J

III (I)

OIl

~~~~~~~~~~~~~~~oooo

\ONN~NNN~~~~\ONN""\o\O

!': w ~

I

.;j I WI (oj I ~ I fJJ

\0 M

M

~

O""""O""""N 00.,.,00.,.,.,., """"""NNNN""N""N""""N

Z 0 H Eo0(

Eo-

U

~ S 0 .J . [oJ

It:

It: 0( tQ

~~~

~~

\0

MMMM"" Ll\Ll\Ll\Ll\N

~ Z

(/J [oJ H EoH

0E-i

11.0

e.. I.; r.J 0.

(I) E-o

~ : 0 I

~~

e..~ O~

W N

0

gj

I

M

N

NM

««««<~~U~~~~~

CX)

M I

,

""'"

WI

III

...

,

00

~

~ ~

I

>

~ 3

(9

~~~~

I

m~~m~~N~~~~~mmMmm

~~

f/) f/)~ 01.:

NO~N~OO~~NN~~m~~m

I

~t ~-

~ ~ .

Z

0

'"

f/)

'0

0\

I

1&1

1&1

1&10 OH HfJ) fJ) E-E--X r..~ I&IH

1&10 OH HfJ) fJ) E-E--X r..~ I&IH

..J1t:

..JD:

-1&1

1&10 OH HfJ) fJ)E-Z::J -HO X-~

1&1 1&IfJ)1&I0 1&I01&l0H OHOHfJ) HfJ)HfJ) fJ) fJ) E--

~

E--

-..J..J

I'. ..J..J..Jr..~E--I&IH OO~~~I&IHO..J1t: E--~~~Z..JD:~

1'.1'. I'. 000000

OO::J..J..J..JZZ It:It:HHE--~~<~~ I&II&ID:D:H~~~

..J..J..J..J..J..J fJ)fJ)fJ)fJ)fJ)fJ) E--E--E--

E--E--E--~~~

~~

E--X

E--XXri.~

~~~~~~ ~~~~~~

H D:1t:0..J..J..J00

ZZI&II&I~OOO~~

1t:1t:E--E--Z~~~~~

OOXXOI&I~I&I..J..J UUI&II&I..JXXXfJ)fJ)

.., 0 It: 0.

48

fJ)fJ)

;I:

E,.~Z Z""

t.j

I

.:JE,.

.. 0\0\0\0\ I

I

E,.

0 I

I

0 0

I

~

M

~

"-

..

aI-

cncn alai

E,.~

=aI

~.:J

MM~C»~~~~~~O\""O\NO\~~O\NC»~~C»~I.o\

ON~O\~~~~O\O~~M~~~MM~~~~C»MI~M

""""""""

N

II

~

I

0

Ze;. f,j~ ~~

f,j ~ >0 e;.

I

OO~~~~M~~ON~~ON~OOOOOMO~ ~~ ~ ~ I

1

1

1

1

1

1

1

I

1

1

1

1

~~~M~~ 1

1

1

1

1

1

1

1

O~

ZZ ~H

~~~~~~~~~~~~OOOO~~~~OOoo


MMMMMMMMMMMM

"'I"I""I~H~~""~H"

I

M

.~

f,jf,j

ZZZZ

ZZ MM~M

U)

tQ

01

DD 00

f,j, e;.,

~~ f,jf,j f,jf,j e;.e;. C/jC/j

C/j 1 1 ~I ~I e;.,~< 01f,j3

I

.oJ

I

i;1:

~ ~ ~ ~

e;.'!':O

I!':Z <~ ~3

ZZ H~

33 MM

f,jf,j

0 r.I

e;.~

C/jC/jC/jC/j

C/jC/j

oe;.

I':£"

"'C/J

0'" . r.l1oo..J DI':

~~ Cj

I':

r.I

r.l1': £,.;I:I':

~

~~~~~~~~~~~~~~~~~~~~~~~~

.

Z£,.<

OD ZOI': <~OO

-...",

ON=~ON=~OO~M~~~~MN~~N~NO MM MM MM

MMMr"'

..J < 3


0

MN

.0

;I:<

0

ZC/J£,.3r.1Z OO£,.< Z ZZ<

Zl':r.I"'O..J "'<..J30..J

Oal

..

.-iN""'"

.-iN"""'.-iN"""'.-iN"""'~~~~.-iN"""'.-iN

..J

aI

Il. <~< Or.lC/J (,jr.l £":C"'..J~;I: £,. ..JC/J

~-

!':

~

D

~~ e;.e;. ~~

0<

e;.

~

ZI
e;.e;.

f,jf,j

C/j

f,j

~~

f,jf,jf,jf,j

f,j C/j

~ Z

IN

33 00

f,j

N ~

0\"""'"

f,j 1 HI e;. 1 HI e;.,

~~ ~~

NNNN ""« >;>;>;>;MMMM>;>; f,jf,jf,jf,j

f,jf,jf,jf,j

C/j~

1

~N

OOOOMMMMMMMMMMMMMMMMMMOM MMMM

NNNNNNNN """" MMMMMMMM

UI

~ 1

~~~Mmm~~~~NO~~NO~~~~Om~N ~~ M ~~NNM~NN

""""'"

C/ji~

I I I

~ XZ e;.~

(/)

IZI

MMIt-00001\0

INC»

t.j

(/)(/)

IZIIZI

..J..JI..J

I.:J.:J I

~<

r.I Ut..~3 alt.. 000 00 UZ £,. Z£,.U'" <1':
r.I ...

~~~~~~~~~~~~~~~~~~~~~~Z~

:CalalOOr.l

S~ .'")£,.~ ffiZ~r.lZz ..J 'O~ '"' ~

~ ~ :z:~ :z:~ou

Z

0 '"' '"'

~ ~

~ 60 ::J 0

.4 .4

~ ~ z

'"'

~

.4

~ OUI.:<~ :Z:~I':
~

UJ ..J ~

~ :z:~

" ,

I

I

~~~~~~~~~~O~ I:Z::Z::Z::Z::Z::Z::Z::Z::Z::Z:~:Z: HHHHHHHHHH

I':

«..J£,.aI< al3

~3

~ ~ :z:~our..1n OUI.:~ :z:~~ :Z:~Oul':< ~~I.:
C/J'"

..JZ I':..JWO
CIJ

!oJ

aI

Dt..r.lO

IooZOC/JZt.. 0'" OWO

~ 3Z..JaI OU

.

~Ioo'"

C/J£"

C/JO£"..JDt..

r.I~ :co

£,.£,.

~

..JZ <"'M 33

D

£"C/Jzoo "'r.lt.. "'alC/J33

I':

C/JO

H

IiJr.I

:CD:Ct..~O £,.Z£,.OC/J'"

ffiffiffiffiffiffiffiffiffiffiffiffi8888888888ffi8 ~~~~~~~~~~~~oooooooooo~o UJUJUJUJUJliJUJ[i)[i)UJUJ[i)r..r..r..r..r..r..r..r..r..r..UJr..

D'"

ZOI':I':

>

WZO
..

I': 0

..JWlooallooll.

.

49

-

P:

~ P3 .x

.UJI e..

O~~~~M~~Mm~ ~m~~M~O~O~M ~N~OOOM~~mO OOOOOOOOOO~ I

Z

I

I

I

m~~MNNM~Nm~ ~m~~~~M~M~~ mN~~~ON~m~~ NN~~O~NM~~~

I

I

I

I

I

~~~m~o~o~o~ ~~OM~~~~MmN mOM~~O~~N~~ MMN~OO~M~~m

I

I

I

I

I

I

I

I

I

I

I

I

I

H

0 Ilo ~p: e..~

~MMN~~~~M~M O~~~~~~O~~~

m~~mN~NM~~m M~OmmO~~~m~

t:i~ ~~~~~~~~~~~ e..UJ ~~OOOOOOOOO z

z~ 0""

~

~O ~ 0:0

H UJ. P3~ O. ~

""1/) ~(oj

'6

~~ I/)

P:

;~ i?;

~

~:J 00:

(oj 0

~~U

~

~I/) ZZ

(oj 0

~U

~(oj 0:0:

~'" '"

I

I

I

~~~~~~~~~~~ m~~M~OO~NMM I

I

mmmmmmmmmmm MMMMMMMMMMM ~~~~~~~~~~~ ~~~~~~~~~~~

O~NNNNNNN~O ~N~~~~~~~N~ m~mmmmmmm~m 00000000000

~M~~~~~~~M~ O~OOOOOOO~O ~M~~~~~~~M~ ~~~~~~~~~~~

mmmmmmmmmmm ~~~~~~~~~~~ mmmmmmmmmmm

~N~MMMMM~N~ ~~~~~~~~~~~ ~~~O~~~O~~~

~~~~~~~~~~~ ~~~~~~~~~~~ NNNNNNNNNNN

NNNNNNNNNNN

00000000000

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

~ I

I

0

z

~~~~~~~~~~~ ~~~MNOO~~NN

+

e..

~o~o~~~m~~~ NmM~~~~MO~~

e..

u ~ ~

I/)

O. ~~

O.

~ 0:

""""'"

~~

(oj

+

>

I

I

I

I

""""'"

00000000000 I

I

I

I

I

I

I

I

I

I

I

I

I

P: 0

..J :J

~

U

P:

(oj~ 00

~e.. ~Z XP3

~~

UJ ~0 .~

0:1/)

m~mm~~~o~m~ ~M~~O~~~~~~ ~MMMNOm~~N~ ~~~~~~~~~~~ I

I

I

I

I

O~~~NNN~~~O ~M~O~O~O~M~ ~~N~N~N~N~~ ~~~NMMMN~~~ I

I

I

I

I

I

I

mN~~~N~~~Nm ~~~M~m~M~~~ ~~~~~~~~~~~ ~~~M~~~M~~~

I

I

I

I

I

I

0""

P3 U P: 0 ~e.. Z ~~ ~~ HO

..J>

~ 0

X~

.

~+

N~mNOO~~NNN ~~~~~~~OO~O ~OMm~MM~mN~ MMN~~~~~~NN """"'" I

I

I

I

N~N~N~N~N~N O~~~~~~~~~O ~m~~~m~~~m~ NO~mOOOm~ON

I

I

I

I

I

I

I

I

I

I

I

I

I

~ I

I

N~MO~~~OM~N ~~ON~~~NO~~ ~oom~m~mOO~ MO~m~~~m~OM

~~~

I

I

I

~~~

e.. Ze.. P31lo ~ I

..

sg~

O~NM~~~~m~o I

I

I

I

~~~~~~~~~~~

O~NM~~~~m~o

O~NM~~~~m~o ~

I

I

I

I

I

NNNNNNNNNNN

I

I

I

I

P:

50

I

I

I

I

I

I

~~~~~~~~~~~

I

I

I

I

I

I

I I 0

~

~OOM~~M~~~~~~O~~MM~~MOO OONM~~~~~~~~~~~~MN~OO 000000000000000000000 I

~

I

I

I

I

I

I

I

I

0

~ I

I

I

I

I

I

I

I

I

I

I

MN~~~MOONM~MM~M~~M~~~N OMNM~~~~~~~~~~~~MN~OO

00

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

,.,.,

I

I

I

I

I

I

OO~~N~~M~~~NOOM~M~~O~N~ OOO~"NNNNNN~"OO~N~~MO

~

, ,

000000000000000000000 I

OOM~~M~~~O~~~~~~M~~MOO~ OO"NM~~~~~~~~~~~~MNOO 000000000000000000000 ..,

I

I

I

I

I

I

I

I

,

I

I

I

I

, ..,

..

000000000000000000000

I

I

M~OOOO~N~~~~OOO~~~O~~~N~ O~NM~~~~~~~~~~~~MN~MO

I

I

I

I

I

00

OO~NO"ON~~~NOON~O~N~OO~ OOOOOOOOO"NM~~~OO~~~NO

~

OOOOON~~~~M~~~MOOOM~O~~OO OO~~~NNM~~~~~~NOOO~~NO

000000000000000000000 ..,

000000000000000000000 I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

~~~~~~~~OOOO~~Nm~~~OON~~ .~ ONMM~~~~~~~~~~~MMNN~O .« ..000000000000000000000 ".

.. ..I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

.~~MM~OM~~~~NO~MOO~~~O~ ~ ~NM~~~~~~~~~~~~MMNNN~

I

Z E-

I

X 0 X

~ H

O~

(I)

10-

~ 0

~

.OON~~N"N~OOM~~~~NM~OOMOOO ~ O~~NM~~~~~ON~NOOO~~MNO

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

~

H

I

.J~

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

~M~M~~O~~O~~~NO~~NOOO~ NMM~~~~~~~~~~~~MMMMNN 000000000000000000000 I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

~~~~~~~~~~~~~~~~~~~~~

N

I

I

I

I

I

I

~OO~N~O~NOON~~~NO~ON~OO ON~~~OO~~~MN~OOOOOOOOO

I

I

I

I

I

I

I

I

I

I

I

I

..000000000000000000000

0

,

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

~O~~OO~~MM~~~~~~~~OO~~O ~~~~~~~~~MMMMMMMMM~~~

sc.:

I

I

I

I

I

I

I

.I

, I

0

I

I

I

, .,

I

I

I

I

I

I

I

I

I

I

I

I

I

I

~OOM~~M~~~~~~O~~~M~~MOO OONM~~~~~~~~~~~~MN~OO

.,

..,

, ...,

, .

000000000000000000000

000000000000000000000 I

,

I .~N~O~MM~MOON~~~M~~N~~OO .~ OM~~N~OO~"NNNNNN~~OOO

I

,

000000000000000000000 I

.000000000000000000000

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

O~O~O~O~O~O~O~O~O~O~O OO~~NNMM~~~~~~~~OOOO~~O ~~~~~~~~~~~~~~~~~~~~N

O~O~O~O~O~O~O~O~O~O~O OO~~NNMM~~~~~~~~~~~~O ~~~~~~~~~~~~~~~~~~~~N

51

I

~~~~~~~~~~~~~~~~~~~~~

..M~~~~~~~MNOOO~~~~~~OO~~ "M ~~~~~~~~~~~MMMMMMMM~~

..I

I I

ffi.

000000000000000000000 I

OOOMOO~MN~~~~MOO~N~N~~NOO ONM~~OOON~NO~~~~~MN"~O OOOOOO~~~"~OOOOOOOOOO ..,..,..,

OO~~O~MOOOM~~~M~~"~NOOOOO ON~~OOON~~~~~~MNN~~~OO

OOM~~~OO~~~~M~~OO~~~~~~OO M~~~~~~~~~~~MMMMMMMMM

I

OO~~~OON~~NNMNN~~NOO~~~OO O~NM~~~~"M~M"~~~~MN~O

~ ~M

X

::> N

, , .

I

I':

uffi. ffix H Z

, ...,

N ,~

N~~~~OO~~OO~~~NOOO~~MMNM MM~~~~~~~~~~~~MMMMMMM

,

...,..,., OOOOOOOO~""~"OOOOOOOO

O. Z

~ ~~M

,

OOOOOOOOOO~"~""OOOOOO

I

O~~N~ONMMM~O~~~OO~~~~~ NNM~~~~~~~~~~~~MMMNNN I

!oJO.

.J 10-

,

.OOOOOOOOOOOOO~~~OOOOO

000000000000000000000

OO.~ ZZ

It:

.oJ :J U

~

~

~

..

000000000000000000000

!oJ

z

I

I

I

I

I I I I

0

" ~

~~~MMMMMMMMM~~~~~~~~~

.....

000000000000000000000

O~N"M~~~~~N""N~~~m~Oo

"000000000000000000""

000000000000000000000 I

m

o~~~~~~~~~o~~~~~~~~~o .O~~OOOO~~~~~~~MMNN~~OOO to..~OOOOOOOOOOOOOOOOOOOO

o~"m~~~~~~~~"M~~m~~o~

I

I

I

I

I

I

I

0(

I

bI U II:

O~mONM~~~~MN"~m~~~N"" NNNMMMMMMMMMMNNNNNNNN

0 t..

000000000000000000000 I I I I I I I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

II

I

I

I

I

I

I

I

< Q

.~m"M~~~mmmmm~~~~N"~~~ ~ ~~~~~~~~~~~~~~~~~~~~~

000000000000000000000 I

~

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

ON~~m~O"NNNNN"O~m~~NO ~~~~~~~~~~~~~~~~~~~~~ I

I

I

I

I

I

I

I

I

~ II: ~ X II:

I

I

I

I

I

I

I

I

I

I

I

I

I

.~

O. Z

I

0: ~

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

M~~~m~"NM~~~~~~~M"~~N

~~~~~~~~~~~~~~~~~~~~~

ffi'

~~~~~~~~~~~~~~~~~~~~~

N

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

""N~~~m~"NM~~~~MNOm~O

NNNNNNNNMMMMMMMMMMNNN I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

.OO~~~~~N""N~~~~~M"N~O."

""000000000000000000" I

0

I

I

I

I

I

I

I

I

,

I

I

I

I

I I

I

I ,

I ,

I

I

I

I

I ,

,

,

I ,

,

I ,

,

t ,

,

I I ,

,

I ,

I

I

.

.000000000000000000000

.I

I

~

~~~NO~NM~~~~~MN~ON~~~ 000000000000000000000

~

~~~NO~NM~~~~~MN~ON~~~ 000000000000000000000

000000000000000000000

I I

I ,

000000000000000000000

,

,

,

I

I ,

I ,

,

I I

,

I ,

,

,

I ,

, ,

,

I I

I I

I

I

I

I

I

I

I

I

I

I

I

I I

I

I

I

I

I

I

I

I

I

I

I

I ,

I

I ,

I

Z. I.:

r.J 00 ~~ r.J. ~

s

,

,

I

I , M

.

I ,

,

~~~NO~NM~~~~~MN~ON~~~ 000000000000000000000 000000000000000000000

,

I

~~~NO~NM~~~~~MN~ON~~~ 000000000000000000000

000000000000000000000

I

I

.~~~NO~NM~~~~~MN~ON~~~ .N 000000000000000000000

.000000000000000000000 .I

ffi

,

~~~NO~NM~~~~~MN~ON~~~ 000000000000000000000

.m

Z I

I

000000000000000000000

t..

000000000000000000000

I

.~~~NO~NM~~~~~MN~ON~~~ OLn 00000.0000000000000000 000000000000000000000

bI

I

~

I

~

Z

I

~~~NO~NM~~~~~MN~ON~~~ 000000000000000000000

(/)

.J

~M X

I

I

0

bI I

,

~~~NO~NM~~~~~MN~ON~~~ 000000000000000000000

t.. ~~~"N~~~~mmmmm~~~M"m~ ~~~~~~~~~~~~~~~~~~~~~ 000000000000000000000

,

~~~~~~~~~~~~~~~~~~~~~

(/)

000000000000000000000 ~

I

< X

.000000000000000000000 .I I I I

I

~

I

N~~"M~~~~~~~MN"~m~~~M ~~~~~~~~~~~~~~~~~~~~~

.

I

0

.J ~

I

I

I

I

I

I

.000000000000000000000

~o~~m~~M"~~~~~~~~m"~o ~~~~~~~~~MMMMMMMMM~~~

~

I ,

~~~NO~NM~~~~~MN~ON~~~ 000000000000000000000

000000000000000000000 000000000000000000000

I

0

o~o~o~o~o~o~o~o~o~o~o OO~~NNMM~~~~~~~~OOOO~~O ~~~~~~~~~~~~~~~~MM~~N

I

I

~~~NO~NM~~~~~MN~ON~~~ 000000000000000000000

000000000000000000000

,

I

I

I ,

OLnOLnOLnOLnOLnOLnOLnOLnOLnOLnO OO~~NNMM~~LnLn~~~~mm~~o ~~~~~~~~~~~~~~~~~~~~N

52

I

I

I

I

~~~NO~NM~~~~~MN~ON~~~ .000000000000000000000 b..000000000000000000000 <

0

,

I

&..

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

O~~~~~~~~~O~ OOO""""NNMM~~~~~r--r

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

~~~O OOO

I

I

I

I

I

I

I

I

I

I

~

I

~~~~~O

I

I

I

~

I

I

I

I

I

I

I

I

,

I

.I

,

,

,

~ I

I

I

,

I

I

I

I

I

I

I

I

~

I

I

I

I

.

~~~O~~~~~~~~~O

OOO""...r--r--~~~~~MMNN""""OOO

.000000000000000000000 I

I

I

o~~~~~~~~ooo~~~~~~~~o ~MMMMMMMM~~~~~~~~~~~~

O~~~~~~~~OOO~~~~~~~~O N~~~~~~~~NNNNNNNNNNNN

O~~~~~~~~OOO~~~~~~~~O ~OOOOOOOO~~~~~~~~~~~~

~ ~ ~. I.:

IIj

~~

I

I

~

I

000000000000000000000

M

I

I

I

I

~~~~~~~~~~~~OOOOOOOO~

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

O~~~~~~~~OOo~~~~~mmmo NNNNNNNNNNNN~~~~~~~~N

I

I

I

I

I

I

I

I

~

I

I

I

I

I

I

I

000000000000000000000 I

0

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

O~~~~~~~~ooo~~m~~~~~o ~~~~~~~~~~~~MMMMMMMM~

I

I

I

I

I

I

I

0~~~~~~~~000~~~~~~~~0 ~~~~~~~~~~~~~~~~~~~~~ 000000000000000000000 I

o~o~o~o~o~o~o~o~o~o~o OO""NNMM~~~~~~~~OOOO~~O """"""""""""""""""""N

I

000000000000000000000

I

I

00000000000000000000

I

000000000000000000000

«

000000000000000000000 O~""~""~""~""~O~~~~~~~~~O O~~~~r--r--~~U'lU'I~MMNN""""OOO

I

« O~~~~~~~~ooom~m~m~m~o .N MMMMMMMMMMMMNNNNNNNNM .000000000000000000000 «

I

O~""~""~""~""~O~~~~~~~~~O OO~"'...r--r--~~~~~MMNN""~OOO

I

O~~~~~~~~OOO~~~~~~~~O

I

000000000000000000000 I

I

.O~~~~~~~~OOO~~~~~~~~O O~ 000000000000000000000 :2;. 000000000000000000000

O~~~~~""~""~O~~~~~~~~~O OOO""""Nr--~~~~~MMNN""""OOO

I

I

000000000000000000000

I

O~~~~~~~""~O~~~~~~~~~O OOO""""NNM~~U'I~MMNN""""OOO 000000000000000000000 I

0

I

..000000000000000000000 .

~~~~~~~O

000000000000000000000

0: [oj

.N

I

O~~~~~~~~OOO~~~~~~~~O MNNNNNNNNMMMMMMMMMMMM

.00

O~~~~~~~~~O~~~~~~~~~O OOO""""NNMM~~U'lMMNN""""OOO I

.O~~~

I

000000000000000000000 OOO

.O~~~~~~~~~O~~~~~~~~~O O~ OOO~""NNMM~~~MMNN""""OOO

M

I ~

000000000000000000000

[oj.

I

~

O~~~~~~~~~O~ OOO""""NNMM~~~~~NN""""OOO

I

I ~

000000000000000000000

~ ~~ ~

I

o~~~~~~~~ooo~~~~~~~~o ~~~~~~~~~~~~~~~~~~~~~

.I

Z.

000000000000000000000

000000000000000000000

.000000000000000000000

N

~~~NO~NM~~~~~MN~ON~~~ 000000000000000000000

0

I

~

.c

I

~

O~~~~~~~~~O~ OOO""""NNMM~~~~~r--r

r--

I

000000000000000000000

000000000000000000000

.

I

o~~~~~~~~~o~~~~~~~~~o OOO""""NNMM~~~~~r--r--~...~~O

I

~

I

I

I

I

I

I

I

I

0~0~0~0~0~0~0~0~0~0~0 OO~~NNMM~~~~~~~~OOOO~~O ~~~~~~~~~~~~~~~~~~~~N

53

.

AI~PEND:rx A PROGRAM FLOW CHART

-

II

I I I

PRrsRAJ/FltNI CHART

54

I I I

..

#4-#11

APPENDIX B VARIABLE LISTING '1' 'P'

I

'2' '3' '4'

A1 11 11 11 11

AAREA

AB ABAR ADATE ADDS ADDW ADI(I) AFLOOR AHITE ALIVE ALLCOV ANDWIL ANDWIR

AR AR(L) AREA(J) IARR(I) ARR(2) ARR(3) ASAT

ASB ASP ASPB ASPM ATYPE Al I A2

A3

I

REINFORCEMENT RATIO CARD CARD NO.1 -MATERIALS

CARD NO.2 CARD NO.3 CARD NO.4

-LOADINGS -BOX CULVERT -WINGWALL

AREA OF REBAR

DEPTH OF EQUIV. RECT. STRESS BLOCK AT BALANCED CONDITION AREA OF REINFORCING BARS IN ARRAY #4-#11 I

DATE F3.2 F3.2

SLAB THICKNESS WALL THICKNESS

INCREMENT INCREMENT

w.w. f2.1

HS20, H2O, HSI5, H15, HSIO, HIO LIVE LOADS WINGWALL CONCRETE COVER EXCEPT FRONT FACE LEFT STRAIGHT WINGWALL LENGTH IN INTEGER RIGHT STRbIGHT WINGWALL LENGTH IN INTEGER AREA OF REBAR REQUIRED AT CONTROLLING PT.

I w. w. w. w. w.w. w.w.

EXTERNAL

STIFFNESS

w. w.

MATRIX

AREA OF REBARREQUIREDAT CRITICAL SECTION TENSION REINFORCEMENT RATIO REINFORCEMENT

RATIO

IN

BALANCED

ASP=AS/bd

CONDITIONS

TRIAL REINFORCEMENT RATIO ASPM=O.5xASPB TYPE OF BARREL; SINGLE, DOUBLE, TRIPLE, QDRPLE AREA OF TOP SLAB SECTIONI AREA OF EXTERIOR WALL SECTION AREA OF INTERIOR WALL SECTION AREA OF BOTTOM SLAB SECTION ARRAY OF REINFORCING BAR DIAMETERS,

A4 BARD ", BB FACTOROF THE WIDTH OF EQUIV. RECT. STRESS BLOCK; .85 BBARH BD MAX. DESIGN DL MOMENT/MAX. DESIGN TOTAL MOMENT BFILT F5.2 BOTTOM HAUNCH BNDWIL LEFT END WINGWALL LENGTH -STRAIGHT BNDWIR RIGHT END WINGWALL LENGTH -STRAIGHT BSLAB F4.2 BOTTOMSLAB THICKNESS -INPUT BTYPE TYPE OF WALL; EXT./INT. WALL, TOP/BOTTOMSLAB BI FACTOROF THE DEPTH OF 'EQUIV. RECT. STRESS BLOCK CE CONCRETEMODULUSOF ELASTICITY CHCU REBAR SUPPORT HEIGHT BASED ON BAR DIAMETER IN 1/4" INCRE. CN F3.1 !MODULARRATIO: STEEL/CONCRETE COMM(17) CaMS A12 COMMENTS COMS(3) COVB F3.2 BOTTOM SLAB CONCRETE COVER (TO CENTER OF BAR) COVIN F3.2 INTERIOR WALL CONCRETECOVER (TO CENTEROF BAR) COVS TOP SLAB CONCRETE COVER (TO CENTER OF BAR) F3.2 COVW F3.2 EXTERIOR WALL CONCRETE COVER (TO CENTER OF BAR) I 13 CULEXT CULVERT EXTENSION --I.-

I

56

I I

I

I I IF3.0

Cl C2 C3 C4 C5 :D(l) 'D(2) D(3) DD DDD DEVL DIS

COEFFICIENT FOR SETTING SLAB THICKNESS COEFFICIENT

SLAB THICKNESS

DEVELOPMENT LENGTH OF REINFORCING

BARI

WIDTH OF SLAB IN FEET OVER WHICH WHEELIS DISTRIBUTED

DLU DNEG ,Dl D2 D3 D4 ECC ECC ECM EDLCl EDLC2 EDLC3 EDLU EDLXl EDLX2 EDLX3 EIOLl EIOL2 EIOL3 EIOL4 ENVIR EWGT FAFC FALDMN FALDMP FALLHT FAMN FAMP FAST FC IFCONC FEMB IFEMS FEML FEMR FEMl FEM2 FEWl FEW2 FFM FFOOT FI FILL FILLR FM FMOMN

FOR SETTING

COEFFICIENT FOR SETTING SLAB THICKNESS COEFFICIENT FOR SETTING SLAB THICKNESS COEFFICIENT FOR SETTING SLAB THICKNESS STEM WIDTH-CONCRETECOVER W.W. FOOT HEIGHT -CONC. COVER W.W. EQUAL TO D(2) W.W. DISTANCE FROMEXTREMETENSION FIBER TO REBAR CENTROID DISTANCE FROMEXTREMECOMPRESSIONFIBER TO REBAR CENTROID UNI FORM DEAD LOAD

F3.2

F5.3 F5.3 F5.3 F4.3 F3.2 F3.2 F3.2

DESIGN NEGATIVE MOMENTPOSITION C. G. OF WINGWALLHEEL WIDTH C. G. OF STEM AND HEEL C. G. OF STEM ,HEEL AND TOE C. G. OF WALL AND FOOT ECCENTRICOF RESULTANT ECCENTRICITY OF RESULTANTLOAD ON A SECTION MIN. ECCENTRICITY REQUIRED BY COMPRESSIONMEMBER EXTRA EXTRA EXTRA EXTRA

CONCENTRATED CONCENTRATED CONCENTRATED UNIFORM DEAD

W.W. W.W. W.W. W.W.

DEAD LOAD DEAD LOAD-2 DEAD LOAD- 3 LOAD

POSITION OF CONCENTRATED LOAD POSITION

OF CONCENTRATED LOAD-2

POSITION OF CONCENTRATED LOAD-3 EI/L

TOP SLAB

EI/L EI/L

EXTERIOR WALL INTERIOR WALL

EI/L BOTTOM SLAB ENVIRONMENT CONDITION UNIT WEIGHT OF SOIL

COMPRESSIVE STRESS IN CONCRETE CAUSED BY FATIGUE DESIGN FATIGUE DESIGN NEGATIVE MOMENT

F4.0

FATIGUE DESIGN POSITIVE MOMENT WINGWALLHEIGHT FT. PART NEGATIVE MOMENTFOR FATIGUE DESIGN POSITIVE MOMENTFOR FATIGUE DESIGN STRESS IN STRAIGHT REINFORCEMENT CAUSEDBY FATIGUE DESIGN EXTREMEFIBER COMPRESSIVESTRESS IN CONCRETE SPECIFIED CONCRETECOMPRESSIVESTRESS DEAD LOAD FIXED DEAD LOAD FIXED

END MOMENT AT BOTTOM SLAB END MOMENT AT TOP SLAB

SOIL PRESSURE FIXED ENDMOMENT AT TOP OF WALL SOIL PRESSURE FIXED END MOMENT AT BOTTOM OF WALL WATER PRESSURE FIXED END MOMENT AT TOP OF WALL WATER PRESSURE FIXED END MOMENT AT BOTTOM OF WALL

INTERIOR JOINT-FORCE MATRIX, INCLUDE FIXED END MOMENT REAL VALUE OF WINGWALLFOOTING W.W. NBOX

F4.2

DESIGNFILL IN FT. EARTHFILL INTERIORJ~INT-FORCEMATRIX TOTAL NEGATIVE

MOMENT

57

II

FMOMP FNEEL

TOTAL

FNLLHT FNOE FNOOT FNOTWI FNOW1 FNTEM

WINGWALL

FOOT FPLDN FPLDP

TOTAL

FYST

F3.0 I F3.

0 F5.0 F5.0

H

HEELPL HEELPP HEELPR HEELSH HHEEL HITE HORFO

Il

Il

FORCE OCCURED WITH

FMOMN

TENSILE STRESS IN REINFORCEMENT AT SERVICE LOADS ALLOWABLE CONCRETE SHEAR STRESS SHEAR SHEAR

ALLOWABLECONCRETESHEARSTRESS ALLOWABLE

REBAR TENSILE

STRESS

SPECIFIED YIELD STRENGTH OF REINFORCEMENT FILL+SLABF/2.0+SURCH(FILL+TOP SLAB THICKNESS+SURCHARGE) WINGWALL HEEL WIDTH w. w. w. w. w. w. IHEEL PRESSURE w. w. w. w. REAL VALUE OF HEEL w.w. DESIGN HEIGHT IN FT. NHITE+(SLABF+SLABBF)*O.5 HORIZONTAL FORCE TO WINGWALL

I1+1 WINGWALLHEIGHT

FT.

PART

BAR SCHEDULE

DESIGN METHOD BOTTOMSLAB FIXITY INTERIOR WALL FIXITY TOP SLAB FIXITY EXTERIOR WALL FIXITY LOAD FACTORCASE (IDSN=l,IFOC=O SERVICE LOAD) WINGWALLFOOTINGTHICKNESS FT. PART FIXED JOINT

IFOOT IHAUCH 11

CARD HEAD NO.

IHEEL WIDTH THIRD

I1

AXLE

FT.

II II

PART

LOAD

PRINTING LIVE LOAD INFLUENCE TOTAL LEFT WINGWALL LENGTH TOTAL RIGHT WINGWALL LENGTH WINGWALL FOOTING WIDTH TOTAL LEFT WINGWALL LENGTH TOTAL RIGHT WINGWALL LENGTH

IOTWIL IOTWIR IPIC ISAMS ISAMW ISER

AXIAL

NUMBER OF MEMBERS

IFIXB IFIXI IFIXT IFIXW IFOC IHEAD IHEEL IHS IHS II ILOOP INFN INTWIL INTWIR IOOTWI

PART PART PART PART PARTI

KEY AND TOE VOLUME

TOTAL NEGATIVE TOTAL POSITIVE

HEEL HEELMO

11 12 IALLHT IBSH IDSN IESTW

IN. IN. IN. IN. IN.

TOTAL AXIAL FORCEOCCUREDWITH FMOMP

I1:'S

~STIR ~STL

MOMENT

WINGWALLWALL THICKNESS IN. PART WINGWALLFOOTINGTHICKNESS WIDTH OF WINGWALLFOOTING (TOE, STEM, HEEL)

FOOTWI

FSHR FSHRN FSHRP

POSITIVE

HEEL WIDTH WINGWALLHErGHT TOE WIDTH WINGWALLFOOTINGTHICKNESS WINGWALLFOOTING WIDTH

SAME TOP & BOTTOM SLAB

IN. IN.

PART PARTFT. PARTFT. PART FT. PART

DESIGN

SAME EXTERIOR & INTERIOR WALL DESIGN SERVICE LOAD CASE (IDSN=2, ISER=O LOAD FACTOR)

58

I

I I I ISHR

SHEAR LOAD CASE

ISPTI

I

ISPT2

ISTEM ISTRI ISTR2

WINGWALL

II

IITEST

ITOE

[

IWALL

F4.2 II

IWALLR IZOF

II II I2

SPECIAL PRINTOUT TOE WIDTH

FT.

INTERIOR WALL THICKNESS INTERIOR WALL THICKNESS

IN. IN.

PART -SEEDED VALUE

ZERO FILL STRESS CHECK ISER=O, 11=2 11 + 1 IFOC=O, 12=2 SELECTIONS OF DESIGN, SPECIAL L.L. , *,

I2

KAST KBASE

Al

KBLK KFOR

' I

;U:PORT

FILL OR ZERO FILL

JOINT

'4'

KFXBS

Al

KFXTS KFXW

Al Al Al Al

KFXI

KHACH KHWAL KODE

I

PART

NUMBER OF MEMBERS

J

I

WALL THICKNESS

KONE

JOINT TYPE- BOTTOM SLAB INTERIOR WALL JOINT TYPE JOINT TYPE-TOP SLAB

JOINT TYPE-EXTERIOR WALL HAUNCH HEADWALL INPUT CARD CODE *, 1, 2, 3, 4, P

1

'1'

IKPASS

KPAS

'P'

KTHR

'3''2'

KTWO .L.I

LCODE

LENG LENGB LENGB2 LENGB3 LENGB4 LOCRES LOCSTA

I

LSKE

LIVE

LENGTH OF CULVERT BOTTOMSLAB; CULEXT = 2 LENGTH OF CULVERT BOTTOMSLAB; CULEXT = 3 LENGTH OF CULVERT BOTTOMSLAB; CULEXT = 4

AS!

LOCATION & IDENTIFICATION

LVOMT MAXSIZ

MEMB MINF MINKEY MINSIZ MM

MMM

LENGTH OF CULVERTALONGCENTERLINE LENGTH OF CULVERT BOTTOM SLAB ALONG CENTER LINE

LOCATION

13

LSKEW

:LVLD

LOAD CODE

F5.2 F5.2 F5.2 F5.2 F5.2

II II 12 I1 I2

OF RESULTANT

MOMEC

MOMENT (1) MOMENT (2) MOMENT(3)

I FT.

FT. FT. FT. FT. FT.

w.w.

LEFT CULVERT SKEW ANGLE LEFT CULVERT SKEW ANGLE LIVE LOAD OMIT LIVE LOAD MAX. BAR SIZE NUMBER OF MEMBER MOMENT INFLUENCE LINE MATRIX MINIMUM OUTPUT KEY

MIN.

BAR SIZE

MEMBER NUMBER NUMBER OF SPAN LOADED

MOMALL

MOMDL

IN IN IN IN IN

DEAD LOAD MOMENT ECCENTRIC MOMENT FACTORED WALL MOMENT FACTORED TOE MOMENT

FACTOREDHEEL MOMENT

59

w.w. w.w

w.w. w.w. w.w.

I

!FS.O

MOMLDC MOMLDT

[

I MOMSP

WATER PRESSURE MOMENT

MOMWP

MTEN NBOX NBl NCARD NFILL

NHITE

NNUMB NOHEAD NOPN

II II

II

NP5

NUMB NX ,OFACT OSETL OVERLD

F4.2

F4.2

RESULT ROE RSKE SHEARA

SHEARH SHEART SHEARW SHR SHRDL

SHRSP SHRWP SIDBEV SKLT SKRT SLAB SLABB SLABBF ISLABBZ

FREEDOM FOR V-TRANSLATION AT INITIAL P FREEDOM FOR ROTATION AT TERMINAL PT. FREEDOM FOR H-TRANSLATION AT TERMINAL FREEDOM FOR V-TRANSLATION AT TERMINALNO. LINE ORDINATES

w.w.

CLEAR SPAN NUMBERS OF REINFORCING

SECTIONS BARS

OVERSTRESS FACTOR OVERLOAD STANDARD TRUCK AXLE

F3.3

PRESSURE ON WINGWALL FOOTING REINFORCEMENT RATIO AXIAL DESIGN LOAD AT BALANCE CONDITION AXIAL FORCE INFLUENCE LINE AT 1/20 PT.

F2.0 F2.0

MAX. SOIL EQUIVALENT" FLUID PRESSURE

F3.1

WATER WEIGHT RESULTANT OF ALL MOMENTS

AXIAL

All

13

DESIGN

LOAD IN

I I I I I I

OF EACH MEMBER

DESIGN AXIAL FORCE OCCUREDWITH SMOMN DESIGN AXIAL FORCE OCCUREDWITH SMOMPMIN. SOIL EQUIVALENT FLUID PRESSURE

PLDMP

PWAT

DEGREE OF DEGREE OF DEGREE OF DEGREE OF INFLUENCE

EXTERNAL JOINT-FORCE MATRIX

PLDMN

PO PRESS PROJNO

FT.

LEFTS IDE OFFSET

PINF

PMIN

OF OF OF OF OF

A SET OF SIZE

p

PB

2-14

NUMBER OF REBAR NUMBER OF HEADWALL TOTAL NUMBER OF THE DEGREE OF FREEDOM

SIZES OF REINFORCING BARS AT CRITICAL

I

PALOAD PAS

CARD NUMBER

DESIGN FILL CLEAR HEIGHT

NO. NO. NO. NO.

NP6 NR

NSZ

POINTS

NO. OF DEGREE OF FREEDOMFOR ROTATION AT INITIAL PT.NO. OF DEGREE OF FREEDOMFOR H-TRANSLATION AT INITIAL P

NP2 NP3 NP4

NSPAN

PRINT M, V, P @ 1/10 NUMBER OF BOXES NBOX+1 INPUT

FS.2 F4.2

NPl

NSE(L)

MAX. LIVE LOAD POSITIVE MOMENT MAX. LIVE LOAD NEGATIVE MOMENTISOIL PRESSURE MOMENT

PURE COMPRESSION

PROJECT NUMBER

REINFORCEMENT RATIO RIGHT CULVERT SKEW ANGLE ALLOWABLE SHEAR

W.W. W. W. ~J~ w.w.

w.w. w.w. w.w.

DESIGN SHEAR STRESS DEAD LOAD SHEAR FORCE $OIL PRESSURE SHEAR FORCE WATER PRESSURE SHEAR FORCE

SIDE BEVEL IN IN. LEFT

SKEWED WINGWALL LENGTH

RIGHT SKEWEDWINGWALLLENGTH TOP SLAB THICKNESS BOTTOM SLAB THICKNESS

BOTTOMSLAB THICKNESS IN FT. BOTTOM SLAB THICKNESS

60

IN.-SEEDED VALUE IN.-SEEDED VALUE -SEEDED VALUE -DEFAULT OR INPUT

I

SLABF SLABZ

I

SLOPEE

-DEFAULT OR INPUT

TOTAL NEGATIVE

SMOMP

TOTAL POSITIVE MOMENTFOR SERVICE LOAD DESIGN MAX.

MOMENT FOR SERVICE

LOAD DESIGN

BAR SPACINGI

MIN. BAR SPACING NSPAN+(EXTERIORWALL+INTERIOR WALL)/2 IN FT.

SPACMIN SPAN SPCG

A SET OF REINFORCEMENT

SPG

REINFORCEMENT SPACINGS AT CRITICAL SECTIONS

SPG(L) SPLDN

LIVE

LOAD AXIAL

SPACINGS

FORCE OCCURED WITH

SPM SPRl

SPl

SP1 * HITE/2.0 + SP2 * HITE/3.0 PRESS * H / 1000.0

SP2

PRESS * HITE / 1000.0

SPR2

SSPCG

SPACING

SSTEM STEEL

REAL VALUE OF STEMTHICKNESS STEEL WEIGHT

STEM

WINGWALL STEM THICKNESS

T

F3.1

LIVE

+ SPM

OF REBAR

LOAD SURCHARGE

INTERMEDIATE

TEMS TFILT

SLAB THICKNESS

TOP HAUNCH

TOE

WINGWALL

TOEMOM

MOMENTAT TOE

TOEPRA

TOE PRESSURE

TOE

WIDTH

W.W.

PSF

jTOE PRESSURE

TOEPRS TOESHR

TOP BEVEL IN IN. TOTAL LEFT WINGWALLLENGTH IN DECIMALFT. TOTAL RIGHT WINGWALLLENGTH IN DECIMALFT.

TOPBEV TOTWIL TOTWIR TSLAB

I

F4.2

TOP SLAB THICKNESS REAL VALUE OF TOE TOTAL CONCRETE VOLUME OF BARREL

TTOE TVOLl TVOL2

TOTAL CONCRETEVOLUMEOF WINGWALL

TVOL3

TOTAL TOTAL TOTAL TOTAL AXIAL AXIAL

TWALLH UMOMN UMOMP UPLDN UPLDP

,TOTAL NEGATIVE SHEARFOR LOAD FACTORDESIGN

USHRP

I TOTAL

VIMP VINF VOLUM VOLll VOL12 VOLUMl VOLUM2 VOLUM3 VOLUM4IVOLUM5

I

W.W. W.W.

-INPUT

w.w.

CONCRETE VOLUME OF BARREL+WINGWALL WINGWALL HEIGHT NEGATIVE MOMENT FOR LOAD FACTOR DESIGN POSITIVE MOMENT FOR LOAD FACTOR DESIGN FORCE OCCURED WITH UMOMN FORCE OCCURED WITH UMOMP

USHRN

V

IF3.1'F3.1

w.w.LB/FT.

INTERIOR WALL THICKNESS

F5.2

I

w.w.

SUM OF VERTICAL FORCESW1,W2,W3

SUMVET SURCH

MOMLDT

LIVE LOAD AXIAL FORCEOCCUREDWITH MOMLDC (FEM2-FEM1)/HITE SP1 * HITE/2.0 + SP2 * HITE/6.0 -SPM

SPLDP

I

-SEEDED VALUE

TOP SLAB THICKNESS TWISTING COUPLE ON FOOTING

SMOMN

SPACMAX

I

TOP SLAB THICKNESS IN FT.

POSITIVE

SHEAR FOR LOAD FACTOR DESIGN

SPAN IMPACT FACTOR SHEAR INFLUENCE LINE MATRIX CONCRETE VOLUME UNIT VOLUME OF BARREL BOTTOM SLAB UNIT VOLUME OF BARREL SIDE AND TOP BOTTOM SLAB CONCRETE VOLUME BARREL WALL CONCRETE VOLUME TOP SLAB CONCRETE VOLUME LEFT HEADWAL CONCRETE VOLUME RIGHT HEADWALL CONCRETE VOLUME

61

CY/FT CY/FT CY/FT CY/FT CY/FT CY/FT CY/FT CY/FT

I VOLUM6 VOLUM7 VSHRLN VSHRLP VSHRN VSHRP VWAT WALL WALLHT WALLIZ WALLMO WALLR WALLSH WALLZ WC

WD WDLF WDLB WDRF WDRB WDW WGTN WHEEL WHEER WIDTH WIDTHL WIDTHR WIDTHF WINDRP WINGA WINGA ,WINGTY WLDRPB WLDRPF WLDRPF WLDRPF WLFS WLBS WRFS WRBS WLSKEB WLSKEF WRSKEB WRSKEF WSKLF WSKLB WSKRF WSKRB WSLFR WSLBR WSRFR WSRBR WSKLFJ WSKLBJ WSKRFJ WSKRBJ WT WVLFl

TOTAL HEADWALL CONCRETE VOLUME TOTAL BARREL CONCRETE VOLUME

NEGATIVE LIVE

LOAD SHEAR FORCE

POSITIVE

LOAD SHEAR FORCE

LIVE

CY/FT CY/FT

TOTAL NEGATIVE SHEAR OF SERVICE LOAD DESIGN !TOTAL POSITIVE SHEAR OF SERVICE LOAD DESIGN EXTERIOR WALL THICKNESS WINGWALL HEIGHT

IN.-SEEDED VALUE

FT.

INTERIOR WALL THICKNESS

F4.2

-DEFAULT OR INPUT

WINGWALL MOMENT

EXTERIOR WALL THICKNESS W.W. EXTERIOR WALL THICKNESS -DEFAULT OR INPUT WDW = (FI + 1.0) * WALLF* HITE * 150.0/(SPAN * FI) UNIFORM DEAD LOAD DUE TO FILL AND TOP SLAB

L L R R

F B F B

WINGWALL WINGWALL WINGWALL WINGWALL

UNIFORM

LENGTH LENGTH LENGTH LENGTH

FROM C FROM C FROM C FROM C

J J J J

TO TO TO TO

BOX FACE BOX FACE BOX FACE BOX FACE

DEAD LOAD DUE TO WALLS

A SET OF REINFORCING BARS UNIT WEIGHT IN PLF.

F5.3

II

ONE WHEEL LIVE LOAD SPECIAL WHEEL LIVE LOAD STRAIGHT WINGWALL FACE WIDTH STRAIGHT WINGWALL FACE WIDTH -LEFT STRAIGHT WINGWALL FACE WIDTH -RIGHT STRAIGHT WINGWALL FRONT FACE WIDTH WINGWALL TOP DROP WINGWALL

SIDE SIDE

IN IN. IN IN. IN IN. IN FT. YES OR NO

DATE HEADWALL TYPE LEFT BACK WINGWALL TOP DROP I RIGHT FRONT WINGWALL TOP DROP RIGHT BACK WINGWALL TOP DROP LEFT FRONT WINGWALL TOP DROP LEFT FRONT WINGWALL LENGTH IN INTEGER LEFT BACK WINGWALL LENGTH IN INTEGER RIGHT FRONT WINGWALL LENGTH IN INTEGER RIGHT BACK WINGWALL LENGTH IN INTEGER LEFT BACK WING WALL SKEW ANGLE INTEGER LEFT FRONT WING WALL SKEW ANGLE INTEGER RIGHT BACK WING WALL SKEW ANGLE INTEGER RIGHT FRONT WING WALL SKEW ANGLE INTEGER LEFT FRONT SKEWED WINGWALL LENGTH lEFT BACK SKEWED WINGWALL LENGTH RIGHT FRONT SKEWED WINGWALL LENGTH RIGHT BACK SKEWED WINGWALL LENGTH LEFT FRONT WINGWALL SKEW ANGLE IN RADIAN LEFT BACK WINGWALL SKEW ANGLE IN RADIAN RIGHT FRONT WINGWALL SKEW ANGLE IN RADIAN RIGHT BACK WINGWALL SKEW ANGLE IN RADIAN

IN FT. IN FT. IN FT. IN FT. IN FT. IN FT. IN FT. IN FT. IN DEGREE IN DEGREE IN DEGREE IN DEGREE FT. FT. FT. FT.

L F WINGWALL DISTANCE FROM CONSTRUCTION JOINT L B WINGWALL DISTANCE FROM CONSTRUCTION JOINT R F WINGWALL DISTANCE FROM CONSTRUCTION JOINT R B WINGWALL DISTANCE FROM CONSTRUCTION JOINT WD = FILL * EWGT + SLABF * 150.0 + (EDLU * 1000.0) LEFT

FRONT WINGWALL CONCRETE VOLUME

62

I

WVLBl WVRFl WVRBl WVOLLF WVOLLB WVOLRF

WVOLRB WVOLl WVOL2 WVOL3

WWCOVS WVSLF WVSLB WVSRF WVSRB

WWHTLF

I

WWHTLB WWHTRF WWHTRB

Wl W2

w3

LEFT BACK WINGWALL'CONCRETE VOLUME RIGHT FRONTWINGWALLCONCRETEVOLUME IRIGHT BACK WINGWALLCONCRETEVOLUME LEFT FRONTWINGWALLCONCRETEVOLUME LEFT BACK WINGWALLCONCRETEVOLUME RIGHT FRONTWINGWALLCONCRETEVOLUME RIGHT. BACK WINGWALLCONCRETEVOLUME UNIT CONCRETEVOLUMEOF WINGWALLFOOTING UNIT

CONCRETE VOLUME OF WINGWALL

WINGWALL

FRONT FACE CONCRETE COVER

LEFT FRONTWINGWALLCONCRETEVOLUME LEFT

BACK WINGWALL CONCRETE VOLUME

RIGHT FRONT WINGWALLCONCRETEVOLUME RIGHT

BACK WINGWALL CONCRETE VOLUME

LEFT FRONTEND WINGWALLHEIGHT LEFT BACK END WINGWALLHEIGHT RIGHT FRONT END WINGWALLHEIGHT RIGHT BACK END WINGWALLHEIGHT EARTH WEIGHT

ON WINGWALL

WINGWALL FOOT WEIGHT

SLAB THICKNESS

Y

INTERIOR WALL SLENDERNESSRATIO

JOINT-DISPLACEMENT

MATRIX

Z

ZFILL

CALCULATEDFILL

I

I I

.I

HEEL

WINGWALLSTEM WEIGHT

X

XD

WALL

TOTAL CONCRETEVOLUMEOF WINGWALL

63

C.Y./FT. C.Y./FT. C.Y./FT.C.Y./FT.

.

APPENDIX C

I

I I I I

I I I I

I 64

I

I I I I I

I 65

...

APPENDIX

D

I I I I

I I

66

I I I

~II

I

~ ~

~ ~

~ i

.I :.

~

~',I '~~1 !.J :o~ ~tlllll~1

If!'''::::j

I ,

t, ". t

~l

lilt

jai.

jS

'~i~ I

i

-

I

'~

~~ ij

~

Ii

'-.

I

!f! ~ t!J\ ~

~

:i!1 i Ii'! ~~

j Iii

1'~

~ Itt

t

~~

):

i;

~1

§

Q

~ijii

!I~ 11 ~ ,r

~ ~ ~

~

I

"" ~V\A

~ ~

'~ ~

I~t

~~

!i~ ~~ "'~ ~

~~

"\ --Z"~l I'. I

~

~

T

/

SI

S

0

[, ~il

I I I

-~

I

.~... --

I

e I

~..

I

I

~~

~ if11\ ~ ~

~

~

..

I~

~ .~

~JI '"

I

~

~~

k

~~

III}

I

~

~

;:~

~f-

jsS

~

M/~.LYJS A1~J:J:RJJa

f

I .~

, ia

tnl ..t

/

I

.".

~ ~

, t

i~ih

I

I

q

'}

!iiif

!,I

~~ ~,,~..'1( I ~.,

II

~ll~~

'= ~ I

~

I

~~

I

~: i1ij~ ~I~ji

~

i

...t

]i~4~

J~ll ~

,it

flij~~i!l;

i

~t

f!1 1 Il,:!":

~il

Jjli.f~

or

1,.,1: "~! ~i!e

~IS

~t ~

.~ .

i"'

~~

~"l.rII~~l

i"i!~i~i )-1Iillll;

I

Pit'



1

I

! it

0

67

'~ ~

~ a ~ ~ ~ ~ ~

~

VI

i

I

~

I

~

I\

~

g -

!~~ . ,I!

11. ] 1-1

~ 1. I . ~IIII

~~I' JI)I

!IIJ ~

i

",

!

~ .. ~ ... ~

~I., j~

In

~

Ii ~ -.~ ~~

@

i

~I

~~

~i

~~ _I,Q.

-~!

:U ~I

'V

~ il

~

1

l

OQ

l-

.~

~

i

~)

,.

l-

~

~

J

J

~ il

~

Q.

~ ~

,,:;/ ...

'I'

~

~

\

t

..

~

~

~

w4

~~~

itl!

~ln

~ ~ ~;cI ~ ..

f:f: 0

~ ~

A

0

68

I

~

I I

(j,

t

~

"!'i

'

;11 i

I

~

~1~ ~ ~. ~111 t:i1~ , .

a!

~

'~I~ II J I

~lqJ

I~ I

j

.

!J &I ~

~ ~

i

oj ti Iii ~Q;

~

w

" , 11 III'~

I I

1i~~

:i ~

j' ~

!

.!

II ~

~I

I)

I

it ~

' I ..

i

-~~

i~ ~

~

s,

""

~

v~ I I

I

'1J!:"'~~ 1 ilt~ ~

~t IITL I~ i ~ - ~l 1"

..11 ~I~

I

ilYI~1 ~..~~» ~l~~~". Q..-

I ~

I

~

~ -'~~

I

0

0

69

u ~ C Q

I

z (')

C

r ~

b

G>

z

~ I\J

':< ~

.0> ~ W

~

I

~

-..j

"0

~ I\)

70

1 ~

to

i

~. ..

~ a

~

I I I

I

"

j

II

I,

I~

~,

"I

--

II II II 1

II I I I

JI

I

)1 ]1 1 ~

~

a!

~

I~

!~

I

-I J.~

'"

f

I-I.

~I~f ~.11~. ~11j,

i ~ ..

I~I'

Ji)1

~

!'~I

..

I~

i

Ii l 11'11 II ~

i~ I.

I .

II f{

~ "'

~ ~

.~ \II

I

I ~ ~

I

I ~

I-

; ~ ...

~

~I

1~

~

.~ 1-~.l

~

~

-. 11.

/-> ~I

~ rd!U

r1 !

I 1

~M~I ~

.II

1

~

~ !tit

~ i:: ~ '"

I

!

--"

-II

1l~

rl~-~~~ ij -

I

~

.ll

a

I

§

I

I ~

'" 0

0

I

~

~

I -

1r1"L-~I~ I ~- §

§I~I!I i~~~~u

~l

I

ilt.~:

1u'c~!~

~

~~

illl

I

71

..

APPENDIX E BLANK INPUT CODING FORMS

I

I I

I I I ~ 72

-

z:

0

z

w

I I

W °

~ W

0

> -J ::J

-.J -.J <:( $:

I-

0

uV"

$:

(..:>z V"U

-~

-z

<:I:: I--U

W Z

1-"": 0 V" Zz 0

Z 0 U

V"i/'i

~

(:5 V" OW

z: z: <::(

I-

0:: W

>~

:3

z> <

V" -

i:L:V"

L.LJ

00-

~W::J ZI--J ~~O ::JWU -J>W

1-' w-'

G

V'~ V'

.c

I-

~

z:

WV"~~ U<.O <~u-

~=XI~

. -'

cl I":><

V'

V'~

~~ ~o

~~

W

~

3:>Y~

~~ ~o . '-'

u-

~~ ~o

~.,; o-v

I

~aJaJ'i3o

~

V'~

'e 0-

i/'i
~

LJ.-

a

n

>~ 0,., ::JuUo°S:2

r-

:I:W~-J~ ~
I

U-U

~

f:z: w

:2: f-


OC

:>

0W

~V"

..V"

L.LJU ~~ <~ Z I-

0::: <:)

~

<:I:Z~ "'>I-W~ o 0

~

-J 0

~W,.,~U <;:;:Z~qU ~> Z ~ ~W-JL.LJ~ ~:I::O O~U~U U

V" . Z ~ - < ,.,

N"

a..

!

I

~ u C[

-'

aJ

-

~... 0- ~

-

Z

-

~~ 1--,

-' ~~0 5 VI = ~ ... ~I-

o <

,.,.. q-

~t-~

<:I:t-

0::

«z

"-" 0

u

-

F

UJ«~

-JQ..IuV'I::;

'ON l.~3"ln:>

lN3~!~IAN3 I§I ~~j

r-

LU<,:,LA.. -JWU:I:

L1-

I

Ic.. w

~

0 ~

E~

Z

a:.

c..:> 0 a:.

I~

I 'ta ~

<-J~I-Z

'v:;Z c..Q ..I-

0

I~

OW::JU'" Z~O

'

IV!

V"I-

V"(..:>0q-

L.LJ

U oCt

~U-

~

.,;

i

:I: t.:>

:t: <.:>

.

Z W ~ OO > OWa"'Q-J u-~OO-I-::J q- < :I:Z.OU

,

«

-J I:I::

WL.LJu--~

N z 0 Vi

0:::
~>-

-J

~

.-Z.-

H.X=~OO'~ ON \L.,.

W

N 0"\ I

~

cr:aJ

U

I--JV"< ~V"::J

-

-

V'

v;

0>

ZOU-i/'iN (..:> Z

z:

r--

oM oM

~=XI~

~ I

I

<~-JL.LJ~:


J.NOt!:J

~o-

-J~< O-JOU~

V)

OM oM

o-v

W~-J

Z<-J.O

CL

113HJ.O

V'

O~>-
1131\0:>

~=XI~

c..V"ZaJlI-~
-

:0o-v

'"

-JV".

.

~~ ~o . 1.1

I"':

-~

D:)

(:)

-

~'XI~

XI

--c..I-

0:::

--

~

-

--'

Zc..c..


I

-

0 u-

V"::J< .~ ~ O~WO~ :I:W WZI-I-, NI-

(:)

-

-Z IL.LJ. -I-Z X~

-J~

I

I--

I-

0

(:)

-J

(..:>

>-aJ~ Z c.. < W 0

x

0

-

X

U3<

u

-

t
z f=

O-JI-

~

z Q

U (..:>

zL.LJ

0

~

I-

.u

1-<

-

.

-V"

o

0

I --II~ I",,"I~ I

~

V)

~

~r

-

.ON l.~31\-'nJ oq-

73

'""' \

q- \ '""'

,-:;;:-\

J

~II::t: ~OI~3.LNI ~~ lfuJ ~ I~ ~ .-~*~ I~ a-CD I~I

w

J.NI~d 'VI:>3dS

000 ~NN~~QQUZ '--'V')

~

-JW V')

V')

0-0

U:I::I::I::I::I::I:V')Z -INIf"")I~ILr)II.OICOI~ #-N~~Ln...oo:>~

z:

I

~

~

V> W

0

lNJViNOljlANJ Igi

I

0"6 =N

Z

W

~ ~

~

a

j~1

u

~= ~= "NIV-j .NI~

~I

~

z 0

-I

11= 'X'1~

-I

II§~

..::;:::(

:s: ~

~

"':-""

u

.
:I:

=:!

c- -"" oz~

N

(~dJ

p'Z9)

~ ~

U Z

3,nO3HJS

lOve

31OnSS31Od 1O31¥M vi .,; ""' ~ a:

~OI~3.LNI

IESI

f-

0::

-' ~ ~ ""

-J -l<<-l
w

~ z

cs
u

O -J .~ CD v.

<:)

co :z:

W

~

0
Q::

w

v.~

Ia

"~I

--

W

a:

<::(

SS3~ ;i,

V)

0

~ a:::j

.

0-

Ln

:z::

~~

~3"O:>

:::

"" ~

a-

-10

CD

c -' .,.,

l.LJoa-

~-I-g

(ISdJ

w



z

0 :I: 0-

L.!-

-

SS3~lS

.,.,~ ~~

1331S )ll'V

:t:a-!

1.-1

N

O
<000'09>'~l.S O131A

<

~~

~

--'""

0

A

-:2::2: LL-

N

yo

~

ffi ,,-5~ ov;< ~~ 3NI1

'" ~

X

I-

LLJ>~

>OV"l

~

~

s::

II- .

.:000:1

L"'-

~

a

OIJ.ISOd :

NOIJ.ISOd

-

:I: -is::: 0-, ~ w ~ ,"-, ~ --\.j.J«i=: ~

:x:: ~<..:>

C1 I~

C~ ~

--a:: W

0

~ :

N

I

:,

~

:

;

§J:;;1 N N

74

L.L!

U oct

<:5

a=:C:)

~

IL.L!I ".:; VI

,~UJU~

~ «Z
~

:I: c..:>


«~~

UJc..:>f-

-,aJ

f-

z

f-

LI0-


f:I: 5:2 Ct:

fZ 0 Ct: LL-

f-

:..:

LJU UJ
1-1u. ~-JQ..f-

-l0-LIu UV'l-V' uV'l~ S3XOB

,.,

E

~~ I: a::

f-~ '"-U UJ<

~~

~o--

(J.,j) (J.~'

c.:>a:: a?:L1-

3

v;~ g~

-~...

II-

-

~i O--J 0-",

~

'"~

1:1_1c.:) I:: 3003

c::

~

W

C ) -.J

111.:1

z

<..:>0-

;:r:

~: ..., -'

NOI.LISOd

~ ~z ~o

U")

~\ -" "" %.,

(.L;J)

I"

wO:z:

~

..,

-

~

00

V> LLJ
~

:z:1u.J1IUQ:I:

00

~ lJ...

W

U-J

°n1.iNI

.~

W

o
l-

~

I

1-010i:z:

-:2:<

2 0 2

--~

<..:;)

c: .

'~NI3~

-'

l-

W I-N r-.

3

'WI

dz c

1

I

I-J

(ISd)

ON

.,.,

0

is'ci -'" or

I~w

V

H'X=~OO'~

NOIJ.ISOd I .NOIJ.ISOd


3l8'VMC

":I:

/So -.

C.L2) C.L2) :

12

;lO.ON

.-.~

.,.,

'-~

n

i

oM oM

S"'fMO'f3H

~=XI~

I

a-

'"

3JV:J

J.NO~:J

~

0-

N

~3"OJ

0

~

<::(

'"-

,~

~

l.LJ
-.J

.

3:>Y~ ~3H.LO.M.M ~

UJaJ ~ <

1<1: I

;

V

~ c


I-J

(:)

8!~

=~

V)~

w >1

":)N

0:::

0:::

~

c;x:: u.. z

~

Q::

f- < d

-"

dn~

I-

I

Q::v)o

UJUJf-""' :> Q:: u 01<[1

10

LJ-

I-

~

~

.~

11'1M

~~

'"~

CD



W

I-

§ ~

~

i

VO

lV>

0

. -' .

~

--

w -J >-

x

3111'

X

:r:

O£J O£J

3!)lOvHJlOnS

l-aJ

W I-

w

I.,!;)d '~Jd

~n~IXY~ ~n~lxv~ <.l~ O"Z>

~VIV) ~ .avo'

c: 0 -1-<1: c:

~

I~Jd 1:J:Jd 5" so ~n~INI~ ~nrtlNlrt

Co

-lCI:J -JaJ

>~ =>

-J

""

-""

ll'1M 8'1 lS 8'VlS

<:::J:

.0

aJ

v

:z:

0

o~d

Xz
0

<{

:I:

X

S:

H:)Nn'1H

Z.I- i~ ~io ~~

z:

a

VI V) I-f-

I

LJoJO -!Q:

~

,/0 'ON

'ON J..~3/1-'n:J ,., -,.,

z

oq-

~=,~ ~

\~I

1=1-

I I

:INDEX

allowable

shear 20,

axle weight. bar schedule.

19,

23,

34,

35,

41,

47, iv,

contitions check. compressive stress cover crack control. critical sections dead load. degree of freedom environment. extension. fatigue stress limits fill force matrix. haunch headwall. height. ..vii, 6,

I I

influence lines internal matrix. lateraldisplacem~nt level. linear. live load. live load surcharge load load factor design. matrix. member. member reference method minimum. moment. pressure. range. reinforcement ratio. service load design. shear. skew angle. slab. slenderness. soil weight. span. steel. Stiffness.

20, 22,30,39,44,56,57,63

22,

40,

41,

15,

16,

20,

25,

25, 29,

57, 60 27,31,39,44,56,59,61 27-31, 37, 39-42, 44, 46-48, 59-62 31, 36, 37, 39, 40, 44, 46, 56-58,

60-63 21,50-53 5 1 vii, 14 7 6, 20, 24, 39, 44, 59, 62 27,61 6,20,24,39,44,57-59,62 10, 21, 32, 61 iv, 1-5, 56, 57, 59-61, 63 iv, 1-8, 10, 31, 33, 34, 50, 52, 53, 57, 59, 60 34 vii,1,2,5,21,58 vii, 8, 14, 15, 23, 26-28, 31, 59 7, 15, 27, 32, 39, 44, 49, 50, 56-60, 62 6, 27, 40, 46, 58, 60, 61 14 13, 24, 56, 60 7, 21, 32, 61, 62 6, 8, 13, 21, 31-34, 39, 44, 49, 52, 58-62 25, 28, 29, 40, 46, 59, 60 24, 25, 39, 41, 44, 47, 56, 57, 59-62 15 21 vii, 6, 20, 25, 33, 36, 37, 39, 40, 44, 46, 59-62 7, 8, 10, 14, 21-23, 32, 39-42, 44, 46-48, 56, 61 1 2,56

...

. ..

14 60,61 24, 57 60 46, 47 30, 56 14

20,24,25,57,59,60,63

matrix method. stJ.ffnessmatrJ.x stress. allowable. block. check.

I

60axle. 60 6 58block. 56Boundary. 1 1 59 57

21,

75

57,

58,

1 J.V, 56 60, 33 14 7, 56 20

compressive. concrete fatigue. level. linear. minimum. range. service load. shear steel. tensile.

32, 8,10,21,32 14,

8,13,21,31-33,58,60

7,

tension. 14, tension tension steel. thickness tie-in length. wall. water Weight. wheel loads. width wingwall wingwallskewangle

57 14 7 14 14 14 21 58Stresses. 1 8tensile. 58

7,8,10,14,32,3'3,56 10 22,26,40,46,58,61

17,

30truck. 6, 20, 32, 60 12, 22, 25, 30, 39-41, 44, 46, 47, 57, 59, 62, 63 6,10,27,31,39,44,57,60 6, 20, 21, 24, 27, 31, 41, 42, 47, 48, 57, 60-63 6 6,31,40,46,56-59,61,62 18, 29, 30, 39, 40, 42, 44, 46, 48, 56, 58, 61-63 28,29

76

~

57

Method of Solution:

Documentation:_-

Input/Output:

User'sName: Company: Adress:

Telephone:

'\ 'I

Mail to : Structures Design Office Florida Department of Transportation 605 Suwannee St., MS 33 Tallahassee,Florida 32399-0450 Attn: Liang Y. Hsia, P.E. Tel: (904) 488-6424,Fax: (904)488-6352

November1992

Comments